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Deteksi penyakit kulit berbasis citra medis membutuhkan model dengan
akurasi tinggi namun tetap efisien untuk diterapkan pada perangkat
dengan keterbatasan komputasi. Penelitian ini mengusulkan pendekatan
Hybrid Knowledge Distillation (Hybrid KD) yang mengombinasikan
distilasi berbasis logit (soff target), pembelajaran berbasis label asli
(hard label), serta penyelarasan fitur internal (feature alignment) antara
teacher dan student model. Model fteacher dibangun menggunakan
arsitektur pretrained berkapasitas besar, sedangkan model student
menggunakan arsitektur ringan seperti MobileNetV2. Eksperimen
dilakukan pada dataset citra penyakit kulit dengan pembagian data
80:10:10 untuk training, validasi, dan pengujian. Hasil evaluasi
menunjukkan bahwa Hybrid KD secara konsisten meningkatkan
performa student model dibandingkan metode distilasi konvensional.
Secara khusus, MobileNetV2 yang dilatih menggunakan Hybrid KD
mencapai akurasi Top-1 sebesar 82.07%, melampaui skema KD berbasis
logit maupun feature alignment secara terpisah, tanpa menambah
kompleksitas model. Temuan ini menunjukkan bahwa Hybrid KD efektif
dalam mentransfer pengetahuan feacher ke student dan berpotensi
digunakan pada sistem diagnosis penyakit kulit berbasis perangkat
dengan sumber daya terbatas.
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ABSTRACT

Image-based skin disease detection requires models that achieve high
accuracy while remaining computationally efficient for deployment on
resource-constrained devices. This study proposes a Hybrid Knowledge
Distillation (Hybrid KD) approach that combines logit-based
distillation (soft targets), hard-label supervision, and internal feature
alignment between teacher and student models. The teacher model is
constructed using a large capacity pretrained architecture, while the
student model employs lightweight architecture such as MobileNetV2.
Experiments are conducted on a skin disease image dataset with an
80:10:10 split for training, validation, and testing. The evaluation
results demonstrate that Hybrid KD consistently improves the
performance of the student model compared to conventional distillation
methods. MobileNetV2 trained with Hybrid KD achieves a Top 1
accuracy of 82.07%, outperforming logit-based distillation and feature
alignment applied independently, without increasing model complexity.
These findings indicate that Hybrid KD effectively transfers knowledge
from the teacher to the student and holds strong potential for deployment
in skin disease diagnostic systems on resource-limited devices.
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1. PENDAHULUAN

Pembelajaran mendalam (deep learning) telah mencapai kemajuan yang sangat signifikan dalam bidang
klasifikasi citra medis, khususnya pada bidang dermatologi [1], [2], di mana Convolutional Neural Networks
(CNN) [3], [4] menunjukkan tingkat akurasi yang tinggi dalam mengidentifikasi dan mengklasifikasikan
berbagai jenis penyakit kulit. Meskipun demikian, penerapan model-model tersebut di lingkungan klinis nyata
masih menghadapi tantangan yang cukup besar, terutama akibat kebutuhan komputasi dan memori yang tinggi.
Jaringan berkapasitas besar seperti DarkNet-53 [5], ResNet-152 [6], [7], dan EfficientNet-B5 [8] mampu
memberikan performa diagnostik yang sangat baik, namun memiliki biaya komputasi yang tinggi sehingga
kurang sesuai untuk diterapkan pada perangkat dengan sumber daya terbatas, seperti aplikasi kesehatan
berbasis mobile atau sistem klinis tertanam (embedded systems).

Keterbatasan ini menegaskan pentingnya pengembangan teknik kompresi model dan transfer learning
yang mampu mempertahankan akurasi diagnostik sekaligus secara signifikan mengurangi beban komputasi.
Knowledge Distillation (KD), yang pertama kali diperkenalkan oleh Hinton et al [9]., telah berkembang
menjadi paradigma yang kuat untuk mentransfer pengetahuan dari model besar yang telah terlatih dengan baik
(teacher) ke model yang lebih kecil dan ringan (student). Melalui pendekatan ini, waktu komputasi yang
dibutuhkan untuk proses klasifikasi atau deteksi citra, video, maupun audio dapat dikurangi secara signifikan
[10].

Berbagai penelitian sebelumnya telah mengeksplorasi pemanfaatan CNN dalam klasifikasi lesi kulit
karena kemampuannya yang unggul dalam menangani tugas berbasis citra [11]. Hosny et al [12],
menggunakan Deep Convolutional Neural Network (DCNN) untuk mengidentifikasi common nevus, atypical
nevus, dan melanoma pada dataset kanker kulit PH2. Dalam penelitian tersebut, arsitektur AlexNet
dimanfaatkan untuk melakukan klasifikasi berbagai jenis keganasan kulit pada dataset PH2. AlexNet awalnya
dirancang untuk tugas pengenalan visual pada /mageNet, dengan struktur yang terdiri dari lima lapisan
konvolusi, satu lapisan max pooling, serta tiga lapisan fully connected. Pada penelitian ini, lapisan terakhir
AlexNet digantikan dengan lapisan sofimax untuk keperluan klasifikasi lesi kulit, dengan bobot model
diperbarui menggunakan stochastic gradient dan disempurnakan melalui proses backpropagation.

Dalam konteks dermatologi, beberapa penelitian terkini mulai mengadopsi transformer-based model
untuk klasifikasi lesi kulit. Flosdorf et al [13]., mengusulkan pendekatan Vision Transformer untuk klasifikasi
melanoma pada dataset ISIC, yang menunjukkan peningkatan performa dibandingkan model machine learning
tradisional seperti KNN dan DT-Tree, hasil menunjukan Vit-L32 mendapatkan akurasi 91.57% dan recall
58.54%. Selain itu, Zhang et al [14]., mengembangkan arsitektur DermVit yang menggabungkan konteks
transformer dengan multi-scale context pyramid yang dilatih pada ISIC 2018 dan ISIC 2019, hasil menunjukan
performa 7.8% lebih unggul dibandingkan ViT-Base. Namun pendekatan berbasis Vision Transformer maupun
transfer learning yang lain memiliki kekurangan di beban komputasi model yang relatif tinggi.

Dalam pendekatan KD, model student tidak hanya belajar dari label keras (hard label) yang tersedia
pada dataset, tetapi juga dari distribusi probabilitas lunak (soft label) yang dihasilkan oleh model teacher. Soft
target ini mengandung informasi yang lebih kaya mengenai kesamaan antar kelas serta hubungan antar kelas,
sehingga memungkinkan model student memiliki kemampuan generalisasi yang lebih baik dibandingkan jika
hanya dilatih menggunakan label ground-truth. Meskipun sederhana dan terbukti efektif, metode KD klasik
masih menghadapi keterbatasan dalam mentransfer pengetahuan representasional yang mendalam serta fitur
struktural, terutama pada tugas pencitraan medis yang kompleks, di mana granularitas fitur dan hubungan
spasial memegang peranan penting. KD standar pada umumnya berfokus pada penyelarasan distribusi keluaran
antara teacher dan student, namun sering kali mengabaikan korelasi fitur tingkat dalam serta panduan dari hard
label yang sangat krusial dalam konteks diagnosis medis. Pada klasifikasi lesi kulit, misalnya, perbedaan
tekstur yang halus, variasi warna, dan struktur morfologis merupakan faktor penting untuk membedakan antara
kasus jinak dan ganas. Tidak adanya penyelarasan fitur secara langsung dapat menyebabkan hilangnya
informasi spasial yang kritis pada model student. Oleh karena itu, pengembangan formulasi KD dengan
memasukkan penyelarasan fitur dan penguatan hard label dipandang mampu memberikan transfer
pengetahuan yang lebih komprehensif dan efektif. Dalam konteks tersebut, penelitian ini mengusulkan
pengembangan kerangka KD Hinton dengan mengintegrasikan supervisi tingkat fitur (feature-level
supervision) serta pembelajaran label hibrida untuk menjembatani kesenjangan representasi antara jaringan
teacher dan student. Dengan adanya penyelarasan fitur, model student didorong untuk meniru representasi
internal model feacher, sehingga pola spasial yang bersifat diskriminatif dapat dipertahankan dan tidak
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tereduksi selama proses distilasi. Di sisi lain, integrasi informasi hard label memastikan bahwa pengetahuan
lunak yang ditransfer tidak mengaburkan batas kelas utama berdasarkan ground truth.

Melalui strategi distilasi hibrida ini, model student mampu mempelajari hubungan semantik tingkat
tinggi sekaligus ciri diagnostik yang bersifat detail, yang sangat penting untuk mencapai performa klasifikasi
yang andal pada domain citra medis yang kompleks seperti diagnosis lesi kulit. Pada penelitian ini, diusulkan
tiga pengembangan terhadap kerangka KD Hinton, yaitu: KD Hinton dengan Hard Label, KD Hinton dengan
Feature Alignment, dan Hybrid KD Hinton. Model teacher yang digunakan mencakup arsitektur berkapasitas
tinggi seperti DarkNet-53, ResNet-152, RepViT-M2-3 [15], EfficientNet-B3/B5, dan WideResNet-50/101,
sedangkan model student terdiri dari MobileNetV2 [16], ResNet-8, ShuffleNetV2 [17], dan EfficientNet-B0.

Konfigurasi ini memungkinkan evaluasi mendalam terhadap kemampuan masing-masing varian
distilasi dalam menyeimbangkan kinerja dan efisiensi komputasi pada tugas klasifikasi penyakit kulit. Dengan
memanfaatkan model teacher pra-latih berkapasitas tinggi, penelitian ini mampu menangkap representasi fitur
dermoskopik yang kaya, seperti pola pigmentasi, batas lesi, dan ketidakteraturan tekstur. Ketika ditransfer ke
model student yang ringkas, representasi tersebut dapat meningkatkan presisi klasifikasi tanpa menambah
beban komputasi secara signifikan. Selain itu, integrasi penyelarasan fitur dan mekanisme distilasi hibrida
terbukti mampu mengurangi degradasi informasi selama proses kompresi model, sehingga model student tetap
mempertahankan ciri diagnostik penting sekaligus mendukung inferensi yang cepat, yang sangat dibutuhkan
pada sistem pendukung keputusan klinis secara real-time.

2. METODOLOGI PENELITIAN

Pada penelitian ini, diusulkan suatu model knowledge distillation yang ditingkatkan dengan
mengintegrasikan beberapa pendekatan, yaitu distilasi berbasis hard label, penyelarasan fitur (feature
alignment), serta kombinasi hibrida dari kedua pendekatan tersebut, guna meningkatkan kinerja identifikasi
penyakit kulit. Berikut alur penelitian ada pada Gambar 1.
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Gambar 1. Alur penelitian.

2.1 Pengumpulan Dataset

Dataset dikumpulkan dengan menggunakan data sekunder yang berasal dari dua publik dataset. Dataset
penyakit kulit [18] (ISIC dataset dan skin disease classification dataset). Dataset ini memiliki 6 kelas label
diantaranya adalah Acne, Benign, Eczema, Infectious, Malignant, dan Pigment yang terdiri dari 38753 gambar.

2.2 Normalisasi dan Data Augmentasi

Data citra dermoskopi pada dataset ISIC memiliki resolusi dan karakteristik visual yang beragam,
sehingga pada tahap awal dilakukan penyeragaman resolusi input menjadi 116x116 piksel. Langkah ini
bertujuan untuk menyeimbangkan beban komputasi serta memastikan konsistensi ukuran masukan pada
seluruh model yang digunakan, terutama dalam skenario pelatihan dengan sumber daya komputasi terbatas.
Meskipun resolusi relatif kecil, informasi tekstur dan pola visual yang relevan untuk diagnosis penyakit kulit
tetap dapat dipertahankan pada skala tersebut. Selanjutnya, proses data augmentasi diterapkan untuk
meningkatkan keberagaman data pelatihan dan memperbaiki kemampuan generalisasi model. Metode
augmentasi yang digunakan meliputi Random Horizontal Flip [19], Color Jitter [20], dan Random Rotation,
sebagaimana ditunjukkan pada Tabel 1. Strategi augmentasi ini dipilih secara konservatif dan terkontrol dengan
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mempertimbangkan sifat klinis citra penyakit kulit. Transformasi geometrik ekstrem seperti rotasi besar,
distorsi perspektif, atau elastic deformation tidak diterapkan karena berpotensi mengubah struktur morfologis
lesi secara tidak realistis dan dapat menurunkan validitas klinis citra.

Tabel 1. Augmentasi data ISIC small.

No Augmentasi Value

1 RandomHorizontalFlip  True

2 Color Jitter brightness = 0.3,
contrast=0.3,
saturation = 0.3,

hue =0.05
3 Random Rotation 10
Normalize norm_mean = (0.5, 0.5, 0.5),

norm_sd =(0.5,0.5,0.5)

Selain itu, augmentasi berbasis warna seperti Color Jitter digunakan untuk mensimulasikan variasi
kondisi pencahayaan, serta variasi warna kulit pasien, yang umum dijumpai dalam praktik klinis nyata.
Augmentasi ringan namun bermakna secara klinis terbukti lebih efektif dibandingkan augmentasi agresif yang
berisiko memperkenalkan artefak visual non-klinis. Dengan demikian, kombinasi augmentasi yang digunakan
pada penelitian ini dirancang untuk menjaga keseimbangan antara peningkatan variasi data dan preservasi
karakteristik medis yang esensial.

2.3  Pembagian Dataset

Pembagian Dataset (Data splitting) merupakan tahapan yang mengacu pada proses membagi dataset
menjadi dua atau lebih bagian dimana biasanya dibagi menjadi dua yaitu data training, data validasi dan data
testing. Data training digunakan untuk melakukan pembelajaran terhadap model pretrained dan knowledge
distillation yang digunakan dalam melakukan klasifikasi gambar penyakit kulit. Data validasi digunakan untuk
memvalidasi model sebelum dilakukan fest pada data. Data festing dilakukan untuk melihat performa model
dalam melakukan klasifikasi. Pada penelitian ini dilakukan pembagian dataset yaitu 80:10:10 seperti pada
Tabel 2.

Tabel 2. Pembagian dataset.

Dataset Jumlah Gambar
Training 30909
Validation 3922
Testing 3922

Selain pembagian data, penelitian ini juga menerapkan class weight [21] untuk mengatasi permasalahan
ketidakseimbangan kelas (class imbalance) yang terdapat pada dataset. Penerapan class weight bertujuan untuk
memberikan bobot yang lebih besar pada kelas dengan jumlah data yang lebih sedikit, sehingga kesalahan
prediksi pada kelas minoritas memperoleh penalti yang lebih tinggi selama proses pelatihan. Dengan strategi
ini, model diharapkan mampu belajar secara lebih adil terhadap seluruh kelas dan tidak bias terhadap kelas
mayoritas, sehingga performa klasifikasi, khususnya pada kelas minoritas, dapat ditingkatkan.

2.4  Pelatihan Model

2.4.1. Konfigurasi Hyperparameter
Pelatihan yang ada menggunakan model feacher dan student yang beranekaragam. Sebelum dilakukan
pelatihan digunakan beberapa hyperparameter seperti pada Tabel 3.

Tabel 3. Hyperparameter settings.

No Hyperparameter Value
1 Epochs Teacher 100
2 Epochs Student 100
3 Batch Size 32-96
4 Resolutions 116 x 116
5 Learning Rate 0.05
6  Seed 42
7 Optimizer SGD
8  Early Stopping 100
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Penggunaan SGD dengan learning rate relatif tinggi [22], [23] terbukti efektif dalam meningkatkan
kemampuan generalisasi model, khususnya ketika digunakan pada model pretrained yang dilatih ulang (fine-
tuning) pada dataset medis seperti ISIC. Penelitian sebelumnya [24] menunjukkan bahwa SGD dengan learning
rate yang lebih besar dapat membantu model keluar dari sharp minima dan menuju flat minima, yang
berkontribusi pada stabilitas generalisasi pada data uji, terutama pada dataset dengan variasi visual yang tinggi
seperti citra lesi kulit.

2.4.2. Pelatihan Teacher

Pada proses pemilihan pretrained teacher digunakan berbagai arsitektur model yang memiliki jumlah
parameter dan ukuran yang besar seperti DarkNet53, ResNetl52, WideReseNet, dan EfficientNet. Beberapa
perbandingan ukuran dan komputasi pretrained model pada Tabel 4.

Tabel 4. Teacher pretrained model.

No Pretrained Model Parameters (M) GFLOPS
1 DarkNet-53 40.59 7.12
2 ResNetl52 58.16 11.60
3 RepVitM2-3 22.41 4.60
4 EfficientNet-B0 4.02 0.39
5 EfficientNet-B3 10.71 0.97
6  EfficientNet-B5 28.35 2.38
7 WideResNet-50 66.85 11.45
8 WideResNet-101 124.85 22.83

2.4.3. Pelatihan Student

Pada proses pemilihan pretrained student digunakan berbagai arsitektur model yang memiliki jumlah
parameter dan ukuran yang lebih kecil dan ringan dibandingkan model feacher seperti MobileNetV'2, ResNetS8,
dan ShuffleNetV?2. Beberapa perbandingan ukuran dan komputasi pretrained model pada Tabel 5.

Tabel 5. Student pretrained model.

No Pretrained Model Parameters (M) GFLOPS

1 MobileNetV2 0.69 0.36
2 ResNet-8 0.08 0.63
3 ShuffleNetV2 1.26 0.15

2.4.4. Implementasi Hybrid KD
Metode distilasi yang digunakan yaitu KD Hinton, KD Hinton + Hard Label dan KD Hinton + Feature
Alignment sekaligus Hybrid KD. Proposed method ditunjukan pada Gambar 2.

Convolutional Feature map ‘
Block channels ‘ Pooling Layer H Fully Connected Layer }7
Logit/Probabilitic
Distibution
Skin Images
(224x224)
[ Logit/Probabilitic
Distibution

Teacher Model
‘ (Teacher)
KL i) }—O% Lo = — X ylog(p) ‘0 Lea= 5,10 - £i13 H i = aLigp + (1 - a)Log + BLpa
Convolutional Feature map ‘ (Student)
Channels ‘ Pooling Layer H Fully Connected Layer }7
Student Model

Gambar 2. Hybrid KD Hinton.

Pada proses Hybrid Knowledge Distillation, gambar kulit berukuran 116x116 terlebih dahulu
dimasukkan ke dalam teacher model dan student model melalui blok konvolusional awal yang mengekstraksi
feature map channels. Baik teacher maupun student menghasilkan representasi fitur tingkat menengah yang
kemudian digunakan untuk perhitungan feature alignment loss (Lp,), yaitu selisih kuadrat antara fitur student
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dan teacher pada layer tertentu untuk mendorong student meniru representasi internal teacher. Setelah itu,
kedua model melanjutkan pemrosesan melalui pooling layer dan fully connected layer untuk menghasilkan
distribusi probabilitas (logit/probability distribution). Distribusi probabilitas teacher digunakan untuk
menghitung soft target loss berbasis Kullback—Leibler divergence (Lgp) dengan suhu temperature tertentu.
Sementara itu, student juga dihitung terhadap ground-truth labels menggunakan cross-entropy loss (L¢g).
Ketiga komponen Joss tersebut soft KD loss (Lgp), hard label loss (L¢g), serta feature alignment loss (Lgy,)
digabungkan menjadi total loss, yaitu:

Ligtar = @Lgp + (1 — a@)Lcg + BLpa (1)

Dengan a mengatur kontribusi distilasi logit, (1 — a)mengatur pembelajaran berbasis label asli, dan 8
mengendalikan seberapa kuat student dipaksa mengikuti representasi fitur feacher. Dengan kombinasi ketiga
komponen tersebut, Hybrid KD mendorong student untuk meniru perilaku teacher bukan hanya pada level
output (logit) tetapi juga pada level label serta struktur fitur internal, sehingga menghasilkan model student
yang lebih akurat dan stabil. Parameter @ dan f berperan penting dalam mengatur keseimbangan antara
pembelajaran berbasis soft targets, hard labels, dan feature-level supervision. Parameter o mengontrol
kontribusi logit-based knowledge distillation loss (Lgp) terhadap cross-entropy loss (L) sedangkan parameter
[ mengatur kekuatan feature alignment loss (Lg,) dalam mendorong student untuk meniru representasi internal
teacher. Nilai @ = 0.85 dipilih untuk memberikan dominasi pada pembelajaran dari soff targets teacher, yang
mengandung informasi dark knowledge berupa hubungan antar kelas yang tidak sepenuhnya tercermin pada
label keras (hard labels). Sementara itu, parameter f = 0.02 ditetapkan relatif kecil untuk memastikan bahwa
feature alignment loss berfungsi sebagai regularizer tambahan, bukan sebagai tujuan utama optimasi. Berbagai
studi [25], [26] menunjukkan bahwa penalti fitur yang terlalu besar dapat menyebabkan over-constraint,
terutama ketika arsitektur teacher dan student berbeda, sehingga justru menghambat kemampuan student untuk
belajar representasi yang optimal.

2.4.5. Evaluasi Model Klasifikasi

Metrik evaluasi merupakan komponen penting untuk menilai kinerja, efisiensi, dan kepraktisan model
deep learning, khususnya dalam konteks knowledge distillation dan perancangan arsitektur ringan. Top-1
accuracy mengukur seberapa sering prediksi dengan probabilitas tertinggi yang dihasilkan model sesuai
dengan label ground truth, yang secara formal dinyatakan sebagai:

Top —1Acc = %Z?’:l L. (argmaxp;,c = y;) ()

N adalah jumlah total sampel pengujian, p;, ¢ adalah probabilitas prediksi model untuk kelas ¢ pada

sampel ke -i, y; adalah label sebenarnya (ground truth) dari sampel ke-I, I. adalah fungsi indikator yang bernilai
1 jika kondisi di dalamnya benar dan 0 jika salah.

Selain itu, Top-5 Accuracy digunakan untuk mengukur apakah label kebenaran termasuk dalam lima

kelas dengan probabilitas tertinggi yang diprediksi oleh model. Metrik ini sangat relevan pada tugas klasifikasi
dengan jumlah kelas yang besar.

Top — 5 Acc = ~¥X,L(y; € Top — 5(py)) (3)

Top — 5(p;) merupakan himpunan lima kelas dengan probabilitas prediksi tertinggi untuk sampel ke-i.
simbol lainnya memiliki makna yang sama seperti pada perhitungan Top-1 Accuracy.

Untuk mengukur kompleksitas model, jumlah parameter dihitung sebagai total keseluruhan bobot yang
dapat dipelajari (learnable weights) sebagai berikut:

Total Parameter Model = Y-, (K, x K, x C[™ x CP%t x CP¥t) 4)
L adalah jumlah /ayer pada model, K; adalah ukuran kernel, C{™ merupakan jumlah channel input, CP**
adalah jumlah /ayer output. Pada penelitian ini juga melakukan pengukuran kompleksitas komputasi (G-Flops)

yang merepresentasikan jumlah operasi floating point dalam satu kali forward pass sebagai berikut:

GFLOPs = YL (2x K2 x CI" x CO* x Hy x W;) + 10° (5)
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K, adalah ukuran kernel konvolusi, C/" merupakan jumlah channel input, C?** adalah jumlah layer

output, H; x W, tinggi dan lebar feature map output, faktor 2 merepresentasikan operasi perkalian maupun
penjumlahan, + 10° merepresentasikan konversi ke dalam GFlops. Sementara itu juga dilakukan pengukuran
waktu training dihitung berdasarkan jumlah epoch, ukuran batch, dan waktu komputasi per-iterasi, yang
mencerminkan efisiensi model dalam proses pembelajaran.

Total Waktu Training = E x%x time;;e, (6)

E merupakan jumlah epochs, N,;, merupakan jumlah data yang dilatih, B adalah batch size, time;,,
adalah waktu komputasi per-iterasi (forward dan backward).

3. HASIL DAN PEMBAHASAN

Hasil eksperimen yang ditampilkan pada Tabel 6., menunjukkan variasi yang signifikan baik dari sisi
akurasi maupun biaya komputasi pada berbagai model teacher yang dievaluasi. Di antara seluruh arsitektur,
WideResNet-101 mencapai akurasi Top-1 tertinggi sebesar 88.44% dan akurasi Top-5 sebesar 99.08%, yang
menegaskan kapasitas representasinya yang sangat kuat. Namun demikian, kinerja tersebut diperoleh dengan
waktu komputasi terlama, yaitu 364.20 menit, yang menunjukkan adanya frade-off yang jelas antara akurasi
dan efisiensi pelatihan.

Tabel 6. Hasil performa training model teacher.

AKurasi (%) Waktu Training

Model Teacher Top-1 Top-5 (Menit)
DarkNet-53 65.79 97.00 82.82
ResNetl52 65.24 96.19 170.56
RepVitM2-3 64.65 95.87 41.90
EfficientNet-B3 81.51 97.88 114.37
EfficientNet-B5 66.62 96.91 222.08
WideResNet-50 87.71 98.54 191.04
WideResNet-101 88.44 99.08 364.20

Sebagai perbandingan, WideResNet-50 menghasilkan akurasi yang sedikit lebih rendah (Top-1:
87.71%; Top-5: 98.54%), namun dengan waktu komputasi yang jauh lebih singkat (191.04 menit), sehingga
memberikan keseimbangan yang lebih baik antara kinerja dan efisiensi. Model yang lebih ringan seperti
RepViTM2-3 dan DarkNet-53 memiliki waktu komputasi yang jauh lebih cepat (masing-masing 41.90 menit
dan 82.82 menit), tetapi akurasi Top-1 yang dicapai relatif lebih rendah, berkisar antara 64.65% — 65.79%,
yang mengindikasikan keterbatasan pada kedalaman representasi fitur. EfficientNet-B3 menonjol sebagai
alternatif yang efisien dengan mencapai akurasi Top-1 sebesar 81.51% dan waktu komputasi moderat (114.37
menit), sehingga cocok untuk skenario yang membutuhkan kinerja tinggi dengan keterbatasan sumber daya.

Secara keseluruhan, hasil ini menegaskan bahwa pemilihan model sangat bergantung pada
keseimbangan antara akurasi dan biaya komputasi, di mana arsitektur yang lebih dalam cenderung memberikan
performa yang lebih baik dengan konsekuensi waktu pelatihan yang lebih lama. Perbandingan kinerja antar
model student yang ditunjukkan pada Tabel 7., juga memperlihatkan frade-off yang serupa.

Tabel 7. Hasil performa training model student.

Akurasi (%) Waktu Training
Model Student Top-1 Top-5 (Menit)
MobileNetV2 38.50 97.80 54.42
ResNet-8 65.98 97.17 93.55
ShuffleNetV2 78.86 98.75 213.02
EfficientNet-B0 69.22 97.55 149.86

ShuffleNetV2 mencapai akurasi Top-1 tertinggi sebesar 78.86% dan akurasi Top-5 sebesar 98.75%, yang
menunjukkan kemampuannya dalam menyerap representasi dari model teacher secara efektif. Namun,
pencapaian ini disertai dengan waktu komputasi terlama di antara model student, yaitu 213.02 menit, sehingga
menjadi model yang paling tidak efisien. Sebaliknya, MobileNetV2 menunjukkan waktu pelatihan tercepat
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(54.42 menit), tetapi memiliki akurasi Top-1 terendah (38.50%), yang mengindikasikan keterbatasan arsitektur
ringan dalam menyerap pengetahuan dari teacher tanpa proses distilasi. ResNet-§ dan EfficientNet-B(0 berada
di antara dua ekstrem tersebut, di mana ResNet-§ memberikan akurasi yang lebih baik dibandingkan
MobileNetV2 dengan waktu pelatihan yang moderate, sementara EfficientNet-B(0 mencapai akurasi Top-1 yang
sedikit lebih tinggi dengan tambahan biaya komputasi. Untuk meningkatkan kinerja model student yang ringan,
seluruh model tersebut kemudian menjalani proses knowledge distillation. Dengan mempertimbangkan
keterbatasan sumber daya komputasi, WideResNet-50 dipilih sebagai model teacher, sedangkan MobileNetV2,
yang memiliki akurasi dan waktu komputasi terendah, dipilih sebagai model student untuk mengevaluasi
sejauh mana pengetahuan dapat ditransfer ke arsitektur yang sangat efisien. Beberapa strategi distilasi
diterapkan, yaitu KD Hinton standar, KD Hinton dengan supervisi Hard Label, KD Hinton dengan tambahan
penyelarasan fitur, serta pendekatan Hybrid KD yang mengombinasikan seluruh komponen tersebut. Tabel 8
merupakan hasil perbandingan dari KD Hinton dan Hybrid KD yang diusulkan.

Tabel 8. Perbandingan performa MobileNetV2: KD Hinton vs Hybrid KD Hinton.

MobileNetV2

Model Student To;_icunfrc;/p_ 5 Computation Time  Parameter (M)
KD Hinton 8146  99.52 124.16 0.69
KD Hinton + Hard Label 81.98  99.59 124.20 0.69
KD Hinton + Feature Alignment ~ 81.31  99.44 124.25 0.69
Hybrid KD Hinton 82.07 98.80 125.08 0.69

Hasil eksperimen distilasi yang ditampilkan pada Tabel 8., menunjukkan bahwa KD Hinton standar
telah memberikan peningkatan signifikan pada akurasi Top-1 MobileNetV2 menjadi 81.46%, yang menegaskan
manfaat supervisi soft label dari model teacher. Penambahan Hard Label meningkatkan akurasi Top-1 menjadi
81.98%, yang menunjukkan bahwa informasi ground truth berperan penting dalam menstabilkan proses
pembelajaran. Sebaliknya, penyelarasan fitur saja sedikit menurunkan akurasi Top-1 menjadi 81.31%, yang
mengindikasikan adanya kendala optimasi ketika supervisi ruang fitur diterapkan pada arsitektur yang sangat
ringan. Pendekatan Hybrid KD Hinton, yang mengombinasikan Soft Label, Hard Label, dan penyelarasan fitur,
menghasilkan kinerja terbaik dengan akurasi Top-1 sebesar 82.07%, tanpa adanya peningkatan jumlah
parameter model (tetap sebesar 0.69 juta). Meskipun waktu komputasi meningkat secara marginal, peningkatan
akurasi yang diperoleh menunjukkan bahwa strategi distilasi hibrida mampu meningkatkan kualitas
representasi model student secara efektif tanpa mengorbankan efisiensi, sehingga sangat sesuai untuk aplikasi
klasifikasi penyakit kulit berbasis perangkat dengan sumber daya terbatas.

4. KESIMPULAN

Penelitian ini secara sistematis mengevaluasi efektivitas Hybrid Knowledge Distillation (Hybrid KD)
dalam meningkatkan kinerja model student berarsitektur ringan pada tugas klasifikasi penyakit kulit, dengan
mempertimbangkan secara eksplisit akurasi, waktu komputasi, kompleksitas model (parameter), dan biaya
komputasi (GFLOPS). Eksperimen diawali dengan analisis komparatif berbagai arsitektur feacher model
berkapasitas besar, mulai dari EfficientNet hingga WideResNet, untuk mengidentifikasi trade-off antara
kekuatan representasi dan biaya pelatihan. Hasil pelatihan teacher menunjukkan bahwa WideResNet-101,
dengan 124.85 juta parameter dan 22.83 GFLOPS, mencapai performa tertinggi (Top-1 88.44%; Top-5
99.08%), namun memerlukan waktu pelatihan terlama sebesar 364.20 menit, sehingga kurang efisien untuk
skenario praktis. Sebaliknya, WideResNet-50 menghasilkan akurasi yang hampir setara (Top-1 87.71%)
dengan waktu pelatihan yang jauh lebih singkat (191.04 menit), sehingga dipilih sebagai teacher terbaik
dengan keseimbangan optimal antara akurasi dan efisiensi. Model yang lebih ringan seperti RepViTM2-3 dan
DarkNet-53 memang memiliki waktu pelatihan jauh lebih singkat, namun akurasi Top-1 yang rendah (=65%)
mengindikasikan keterbatasan kapasitas representasi untuk bertindak sebagai feacher yang efektif. Pada sisi
student model, evaluasi awal tanpa distilasi menunjukkan bahwa MobileNetV2, meskipun sangat efisien
dengan hanya 0.69 juta parameter dan 0.36 GFLOPS, memiliki performa Top-1 terendah (38.50%),
menegaskan bahwa arsitektur sangat ringan tidak mampu mempelajari representasi diskriminatif secara
optimal melalui pembelajaran konvensional. Model student lain seperti ShuffleNetV2 dan EfficientNet-B0
mencapai akurasi lebih tinggi, tetapi dengan waktu pelatihan yang meningkat secara signifikan, sehingga
mengurangi keunggulan efisiensi. Melalui penerapan Knowledge Distillation, khususnya dengan WideResNet-
50 sebagai teacher dan MobileNetV2 sebagai student, terjadi peningkatan performa yang sangat signifikan. KD

2025 Sasongko et al., Hal 222



NFOS Information System Journal (INFOS)
JOURNAL | Vol 8, No. 2, November 2025, pp. 215-224

E-ISSN : 2655-142X , P-ISSN : 2655-190X, DOI:https://doi.org/10.24076/infosjournal.2025v8102.2585

Hinton standar berhasil meningkatkan akurasi Top-1 MobileNetV2 dari 38.50% menjadi 81.46%, membuktikan
efektivitas supervisi Sofi Label dalam mentransfer pengetahuan. Penambahan Hard Label supervision
meningkatkan stabilitas pembelajaran dan menghasilkan akurasi Top-1 sebesar 81.98%, sementara Feature
Alignment secara tunggal tidak memberikan peningkatan optimal, menunjukkan adanya keterbatasan
penyelarasan fitur pada arsitektur yang sangat ringan. Pendekatan Hybrid KD Hinton, yang mengombinasikan
Soft Label, Hard Label, dan Feature Alignment, memberikan hasil terbaik dengan akurasi Top-1 sebesar
82.07%, tanpa adanya peningkatan jumlah parameter model (tetap 0.69 juta parameter). Waktu komputasi
hanya meningkat secara marginal (=125 menit), yang masih jauh lebih efisien dibandingkan pelatihan feacher
model berkapasitas besar. Hasil ini menegaskan bahwa Hybrid KD mampu meningkatkan kualitas representasi
internal student secara efektif dengan biaya komputasi yang sangat rendah, menjadikannya solusi praktis untuk
deployment pada perangkat dengan sumber daya terbatas.

Secara keseluruhan, eksperimen ini menunjukkan bahwa Hybrid Knowledge Distillation secara efektif
meminimalkan frade-off antara akurasi dan efisiensi, dengan mentransfer informasi diagnostik penting dari
teacher berkapasitas besar ke student ringan tanpa menambah kompleksitas model saat inferensi. Pendekatan
ini sangat relevan untuk aplikasi klasifikasi penyakit kulit berbasis citra pada sistem klinis tertanam dan
perangkat mobile, di mana keterbatasan memori, waktu inferensi, dan konsumsi daya menjadi faktor krusial.
Kedepannya, penelitian ini dapat dikembangkan dengan eksplorasi penyelarasan fitur adaptif, penentuan layer
distilasi yang lebih selektif, serta evaluasi pada dataset medis yang lebih beragam untuk meningkatkan
generalisasi dan keandalan sistem diagnosis berbasis kecerdasan buatan.
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