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Deteksi penyakit kulit berbasis citra medis membutuhkan model dengan 
akurasi tinggi namun tetap efisien untuk diterapkan pada perangkat 
dengan keterbatasan komputasi. Penelitian ini mengusulkan pendekatan 
Hybrid Knowledge Distillation (Hybrid KD) yang mengombinasikan 
distilasi berbasis logit (soft target), pembelajaran berbasis label asli 
(hard label), serta penyelarasan fitur internal (feature alignment) antara 

teacher dan student model. Model teacher dibangun menggunakan 
arsitektur pretrained berkapasitas besar, sedangkan model student 
menggunakan arsitektur ringan seperti MobileNetV2. Eksperimen 
dilakukan pada dataset citra penyakit kulit dengan pembagian data 
80:10:10 untuk training, validasi, dan pengujian. Hasil evaluasi 
menunjukkan bahwa Hybrid KD secara konsisten meningkatkan 
performa student model dibandingkan metode distilasi konvensional. 
Secara khusus, MobileNetV2 yang dilatih menggunakan Hybrid KD 

mencapai akurasi Top-1 sebesar 82.07%, melampaui skema KD berbasis 
logit maupun feature alignment secara terpisah, tanpa menambah 
kompleksitas model. Temuan ini menunjukkan bahwa Hybrid KD efektif 
dalam mentransfer pengetahuan teacher ke student dan berpotensi 
digunakan pada sistem diagnosis penyakit kulit berbasis perangkat 
dengan sumber daya terbatas. 
 

Kata Kunci :  
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ABSTRACT  
Image-based skin disease detection requires models that achieve high 
accuracy while remaining computationally efficient for deployment on 
resource-constrained devices. This study proposes a Hybrid Knowledge 
Distillation (Hybrid KD) approach that combines logit-based 
distillation (soft targets), hard-label supervision, and internal feature 
alignment between teacher and student models. The teacher model is 
constructed using a large capacity pretrained architecture, while the 
student model employs lightweight architecture such as MobileNetV2. 

Experiments are conducted on a skin disease image dataset with an 
80:10:10 split for training, validation, and testing. The evaluation 
results demonstrate that Hybrid KD consistently improves the 
performance of the student model compared to conventional distillation 
methods. MobileNetV2 trained with Hybrid KD achieves a Top 1 
accuracy of 82.07%, outperforming logit-based distillation and feature 
alignment applied independently, without increasing model complexity. 
These findings indicate that Hybrid KD effectively transfers knowledge 

from the teacher to the student and holds strong potential for deployment 
in skin disease diagnostic systems on resource-limited devices.  
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1. PENDAHULUAN 

Pembelajaran mendalam (deep learning) telah mencapai kemajuan yang sangat signifikan dalam bidang 
klasifikasi citra medis, khususnya pada bidang dermatologi [1], [2], di mana Convolutional Neural Networks 

(CNN) [3], [4] menunjukkan tingkat akurasi yang tinggi dalam mengidentifikasi dan mengklasifikasikan 

berbagai jenis penyakit kulit. Meskipun demikian, penerapan model-model tersebut di lingkungan klinis nyata 

masih menghadapi tantangan yang cukup besar, terutama akibat kebutuhan komputasi dan memori yang tinggi. 

Jaringan berkapasitas besar seperti DarkNet-53 [5], ResNet-152 [6], [7], dan EfficientNet-B5 [8] mampu 

memberikan performa diagnostik yang sangat baik, namun memiliki biaya komputasi yang tinggi sehingga 

kurang sesuai untuk diterapkan pada perangkat dengan sumber daya terbatas, seperti aplikasi kesehatan 

berbasis mobile atau sistem klinis tertanam (embedded systems). 

Keterbatasan ini menegaskan pentingnya pengembangan teknik kompresi model dan transfer learning 

yang mampu mempertahankan akurasi diagnostik sekaligus secara signifikan mengurangi beban komputasi. 

Knowledge Distillation (KD), yang pertama kali diperkenalkan oleh Hinton et al [9]., telah berkembang 

menjadi paradigma yang kuat untuk mentransfer pengetahuan dari model besar yang telah terlatih dengan baik 
(teacher) ke model yang lebih kecil dan ringan (student). Melalui pendekatan ini, waktu komputasi yang 

dibutuhkan untuk proses klasifikasi atau deteksi citra, video, maupun audio dapat dikurangi secara signifikan 

[10]. 

Berbagai penelitian sebelumnya telah mengeksplorasi pemanfaatan CNN dalam klasifikasi lesi kulit 

karena kemampuannya yang unggul dalam menangani tugas berbasis citra [11]. Hosny et al [12]., 

menggunakan Deep Convolutional Neural Network (DCNN) untuk mengidentifikasi common nevus, atypical 

nevus, dan melanoma pada dataset kanker kulit PH2. Dalam penelitian tersebut, arsitektur AlexNet 

dimanfaatkan untuk melakukan klasifikasi berbagai jenis keganasan kulit pada dataset PH2. AlexNet awalnya 

dirancang untuk tugas pengenalan visual pada ImageNet, dengan struktur yang terdiri dari lima lapisan 

konvolusi, satu lapisan max pooling, serta tiga lapisan fully connected. Pada penelitian ini, lapisan terakhir 

AlexNet digantikan dengan lapisan softmax untuk keperluan klasifikasi lesi kulit, dengan bobot model 
diperbarui menggunakan stochastic gradient dan disempurnakan melalui proses backpropagation. 

Dalam konteks dermatologi, beberapa penelitian terkini mulai mengadopsi transformer-based model 

untuk klasifikasi lesi kulit. Flosdorf et al [13]., mengusulkan pendekatan Vision Transformer untuk klasifikasi 

melanoma pada dataset ISIC, yang menunjukkan peningkatan performa dibandingkan model machine learning 

tradisional seperti KNN dan DT-Tree, hasil menunjukan Vit-L32 mendapatkan akurasi 91.57% dan recall 

58.54%. Selain itu, Zhang et al [14]., mengembangkan arsitektur DermVit yang menggabungkan konteks 

transformer dengan multi-scale context pyramid yang dilatih pada ISIC 2018 dan ISIC 2019, hasil menunjukan 

performa 7.8% lebih unggul dibandingkan ViT-Base. Namun pendekatan berbasis Vision Transformer maupun 

transfer learning yang lain memiliki kekurangan di beban komputasi model yang relatif tinggi. 

Dalam pendekatan KD, model student tidak hanya belajar dari label keras (hard label) yang tersedia 

pada dataset, tetapi juga dari distribusi probabilitas lunak (soft label) yang dihasilkan oleh model teacher. Soft 

target ini mengandung informasi yang lebih kaya mengenai kesamaan antar kelas serta hubungan antar kelas, 
sehingga memungkinkan model student memiliki kemampuan generalisasi yang lebih baik dibandingkan jika 

hanya dilatih menggunakan label ground-truth. Meskipun sederhana dan terbukti efektif, metode KD klasik 

masih menghadapi keterbatasan dalam mentransfer pengetahuan representasional yang mendalam serta fitur 

struktural, terutama pada tugas pencitraan medis yang kompleks, di mana granularitas fitur dan hubungan 

spasial memegang peranan penting. KD standar pada umumnya berfokus pada penyelarasan distribusi keluaran 

antara teacher dan student, namun sering kali mengabaikan korelasi fitur tingkat dalam serta panduan dari hard 

label yang sangat krusial dalam konteks diagnosis medis. Pada klasifikasi lesi kulit, misalnya, perbedaan 

tekstur yang halus, variasi warna, dan struktur morfologis merupakan faktor penting untuk membedakan antara 

kasus jinak dan ganas. Tidak adanya penyelarasan fitur secara langsung dapat menyebabkan hilangnya 

informasi spasial yang kritis pada model student. Oleh karena itu, pengembangan formulasi KD dengan 

memasukkan penyelarasan fitur dan penguatan hard label dipandang mampu memberikan transfer 
pengetahuan yang lebih komprehensif dan efektif. Dalam konteks tersebut, penelitian ini mengusulkan 

pengembangan kerangka KD Hinton dengan mengintegrasikan supervisi tingkat fitur (feature-level 

supervision) serta pembelajaran label hibrida untuk menjembatani kesenjangan representasi antara jaringan 

teacher dan student. Dengan adanya penyelarasan fitur, model student didorong untuk meniru representasi 

internal model teacher, sehingga pola spasial yang bersifat diskriminatif dapat dipertahankan dan tidak 



Information System Journal (INFOS) 
Vol. 8, No. 2, November 2025, pp. 215-224 
E-ISSN : 2655-142X , P-ISSN : 2655-190X, DOI:https://doi.org/10.24076/infosjournal.2025v8i02.2585 

 
 

 
2025 Sasongko et al., Hal 217  

 

tereduksi selama proses distilasi. Di sisi lain, integrasi informasi hard label memastikan bahwa pengetahuan 

lunak yang ditransfer tidak mengaburkan batas kelas utama berdasarkan ground truth. 

Melalui strategi distilasi hibrida ini, model student mampu mempelajari hubungan semantik tingkat 

tinggi sekaligus ciri diagnostik yang bersifat detail, yang sangat penting untuk mencapai performa klasifikasi 

yang andal pada domain citra medis yang kompleks seperti diagnosis lesi kulit. Pada penelitian ini, diusulkan 
tiga pengembangan terhadap kerangka KD Hinton, yaitu: KD Hinton dengan Hard Label, KD Hinton dengan 

Feature Alignment, dan Hybrid KD Hinton. Model teacher yang digunakan mencakup arsitektur berkapasitas 

tinggi seperti DarkNet-53, ResNet-152, RepViT-M2-3 [15], EfficientNet-B3/B5, dan WideResNet-50/101, 

sedangkan model student terdiri dari MobileNetV2 [16], ResNet-8, ShuffleNetV2 [17], dan EfficientNet-B0. 

Konfigurasi ini memungkinkan evaluasi mendalam terhadap kemampuan masing-masing varian 

distilasi dalam menyeimbangkan kinerja dan efisiensi komputasi pada tugas klasifikasi penyakit kulit. Dengan 

memanfaatkan model teacher pra-latih berkapasitas tinggi, penelitian ini mampu menangkap representasi fitur 

dermoskopik yang kaya, seperti pola pigmentasi, batas lesi, dan ketidakteraturan tekstur. Ketika ditransfer ke 

model student yang ringkas, representasi tersebut dapat meningkatkan presisi klasifikasi tanpa menambah 

beban komputasi secara signifikan. Selain itu, integrasi penyelarasan fitur dan mekanisme distilasi hibrida 

terbukti mampu mengurangi degradasi informasi selama proses kompresi model, sehingga model student tetap 

mempertahankan ciri diagnostik penting sekaligus mendukung inferensi yang cepat, yang sangat dibutuhkan 

pada sistem pendukung keputusan klinis secara real-time. 

 

2. METODOLOGI PENELITIAN 

Pada penelitian ini, diusulkan suatu model knowledge distillation yang ditingkatkan dengan 

mengintegrasikan beberapa pendekatan, yaitu distilasi berbasis hard label, penyelarasan fitur (feature 

alignment), serta kombinasi hibrida dari kedua pendekatan tersebut, guna meningkatkan kinerja identifikasi 

penyakit kulit. Berikut alur penelitian ada pada Gambar 1. 
 

 

 
 

Gambar 1. Alur penelitian. 
 

 

2.1 Pengumpulan Dataset 

Dataset dikumpulkan dengan menggunakan data sekunder yang berasal dari dua publik dataset.  Dataset 

penyakit kulit [18] (ISIC dataset dan skin disease classification dataset). Dataset ini memiliki 6 kelas label 

diantaranya adalah Acne, Benign, Eczema, Infectious, Malignant, dan Pigment yang terdiri dari 38753 gambar. 

2.2 Normalisasi dan Data Augmentasi 

Data citra dermoskopi pada dataset ISIC memiliki resolusi dan karakteristik visual yang beragam, 

sehingga pada tahap awal dilakukan penyeragaman resolusi input menjadi 116×116 piksel. Langkah ini 

bertujuan untuk menyeimbangkan beban komputasi serta memastikan konsistensi ukuran masukan pada 

seluruh model yang digunakan, terutama dalam skenario pelatihan dengan sumber daya komputasi terbatas. 

Meskipun resolusi relatif kecil, informasi tekstur dan pola visual yang relevan untuk diagnosis penyakit kulit 

tetap dapat dipertahankan pada skala tersebut. Selanjutnya, proses data augmentasi diterapkan untuk 

meningkatkan keberagaman data pelatihan dan memperbaiki kemampuan generalisasi model. Metode 

augmentasi yang digunakan meliputi Random Horizontal Flip [19], Color Jitter [20], dan Random Rotation, 

sebagaimana ditunjukkan pada Tabel 1. Strategi augmentasi ini dipilih secara konservatif dan terkontrol dengan 
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mempertimbangkan sifat klinis citra penyakit kulit. Transformasi geometrik ekstrem seperti rotasi besar, 

distorsi perspektif, atau elastic deformation tidak diterapkan karena berpotensi mengubah struktur morfologis 

lesi secara tidak realistis dan dapat menurunkan validitas klinis citra. 

Tabel 1. Augmentasi data ISIC small. 
 

No Augmentasi Value 

1 RandomHorizontalFlip True 

2 Color Jitter brightness = 0.3,  

contrast = 0.3,  

saturation = 0.3,  

hue = 0.05 

3 Random Rotation 10 

4 Normalize norm_mean = (0.5, 0.5, 0.5), 

norm_sd = (0.5, 0.5, 0.5) 
 

 

Selain itu, augmentasi berbasis warna seperti Color Jitter digunakan untuk mensimulasikan variasi 

kondisi pencahayaan, serta variasi warna kulit pasien, yang umum dijumpai dalam praktik klinis nyata. 

Augmentasi ringan namun bermakna secara klinis terbukti lebih efektif dibandingkan augmentasi agresif yang 

berisiko memperkenalkan artefak visual non-klinis. Dengan demikian, kombinasi augmentasi yang digunakan 

pada penelitian ini dirancang untuk menjaga keseimbangan antara peningkatan variasi data dan preservasi 

karakteristik medis yang esensial. 

2.3 Pembagian Dataset 

Pembagian Dataset (Data splitting) merupakan tahapan yang mengacu pada proses membagi dataset 
menjadi dua atau lebih bagian dimana biasanya dibagi menjadi dua yaitu data training, data validasi dan data 

testing. Data training digunakan untuk melakukan pembelajaran terhadap model pretrained dan knowledge 

distillation yang digunakan dalam melakukan klasifikasi gambar penyakit kulit. Data validasi digunakan untuk 

memvalidasi model sebelum dilakukan test pada data. Data testing dilakukan untuk melihat performa model 

dalam melakukan klasifikasi. Pada penelitian ini dilakukan pembagian dataset yaitu 80:10:10 seperti pada 

Tabel 2. 

Tabel 2. Pembagian dataset. 
 

Dataset Jumlah Gambar 

Training 30909 

Validation 3922 

Testing 3922 

 
 

Selain pembagian data, penelitian ini juga menerapkan class weight [21] untuk mengatasi permasalahan 

ketidakseimbangan kelas (class imbalance) yang terdapat pada dataset. Penerapan class weight bertujuan untuk 

memberikan bobot yang lebih besar pada kelas dengan jumlah data yang lebih sedikit, sehingga kesalahan 
prediksi pada kelas minoritas memperoleh penalti yang lebih tinggi selama proses pelatihan. Dengan strategi 

ini, model diharapkan mampu belajar secara lebih adil terhadap seluruh kelas dan tidak bias terhadap kelas 

mayoritas, sehingga performa klasifikasi, khususnya pada kelas minoritas, dapat ditingkatkan. 

2.4 Pelatihan Model 
 

2.4.1. Konfigurasi Hyperparameter 

Pelatihan yang ada menggunakan model teacher dan student yang beranekaragam. Sebelum dilakukan 

pelatihan digunakan beberapa hyperparameter seperti pada Tabel 3. 

Tabel 3. Hyperparameter settings. 
 

No Hyperparameter Value 

1 Epochs Teacher 100 

2 Epochs Student 100 

3 Batch Size 32-96 

4 Resolutions 116 x 116 

5 Learning Rate 0.05 

6 Seed 42 

7 Optimizer SGD 

8 Early Stopping 100 
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Penggunaan SGD dengan learning rate relatif tinggi [22], [23] terbukti efektif dalam meningkatkan 

kemampuan generalisasi model, khususnya ketika digunakan pada model pretrained yang dilatih ulang (fine-

tuning) pada dataset medis seperti ISIC. Penelitian sebelumnya [24] menunjukkan bahwa SGD dengan learning 

rate yang lebih besar dapat membantu model keluar dari sharp minima dan menuju flat minima, yang 

berkontribusi pada stabilitas generalisasi pada data uji, terutama pada dataset dengan variasi visual yang tinggi 

seperti citra lesi kulit. 

2.4.2. Pelatihan Teacher 

Pada proses pemilihan pretrained teacher digunakan berbagai arsitektur model yang memiliki jumlah 

parameter dan ukuran yang besar seperti DarkNet53, ResNet152, WideReseNet, dan EfficientNet. Beberapa 

perbandingan ukuran dan komputasi pretrained model pada Tabel 4. 

Tabel 4. Teacher pretrained model. 
 

No Pretrained Model Parameters (M) GFLOPS 

1 DarkNet-53 40.59 7.12 

2 ResNet152 58.16 11.60 

3 RepVitM2-3 22.41 4.60 

4 EfficientNet-B0 4.02 0.39 

5 EfficientNet-B3 10.71 0.97 

6 EfficientNet-B5 28.35 2.38 

7 WideResNet-50 66.85 11.45 

8 WideResNet-101 124.85 22.83 

 

2.4.3. Pelatihan Student 

Pada proses pemilihan pretrained student digunakan berbagai arsitektur model yang memiliki jumlah 

parameter dan ukuran yang lebih kecil dan ringan dibandingkan model teacher seperti MobileNetV2, ResNet8, 

dan ShuffleNetV2. Beberapa perbandingan ukuran dan komputasi pretrained model pada Tabel 5. 

Tabel 5. Student pretrained model. 
 

No Pretrained Model Parameters (M) GFLOPS 

1 MobileNetV2 0.69 0.36 

2 ResNet-8 0.08 0.63 

3 ShuffleNetV2 1.26 0.15 

 

2.4.4. Implementasi Hybrid KD 

Metode distilasi yang digunakan yaitu KD Hinton, KD Hinton + Hard Label dan KD Hinton + Feature 

Alignment sekaligus Hybrid KD. Proposed method ditunjukan pada Gambar 2. 

 
 

Gambar 2. Hybrid KD Hinton. 
 

Pada proses Hybrid Knowledge Distillation, gambar kulit berukuran 116x116 terlebih dahulu 

dimasukkan ke dalam teacher model dan student model melalui blok konvolusional awal yang mengekstraksi 

feature map channels. Baik teacher maupun student menghasilkan representasi fitur tingkat menengah yang 

kemudian digunakan untuk perhitungan feature alignment loss (𝐿𝐹𝐴), yaitu selisih kuadrat antara fitur student 
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dan teacher pada layer tertentu untuk mendorong student meniru representasi internal teacher. Setelah itu, 

kedua model melanjutkan pemrosesan melalui pooling layer dan fully connected layer untuk menghasilkan 

distribusi probabilitas (logit/probability distribution). Distribusi probabilitas teacher digunakan untuk 

menghitung soft target loss berbasis Kullback–Leibler divergence (𝐿𝐾𝐷) dengan suhu temperature tertentu. 

Sementara itu, student juga dihitung terhadap ground-truth labels menggunakan cross-entropy loss (𝐿𝐶𝐸). 

Ketiga komponen loss tersebut soft KD loss (𝐿𝐾𝐷), hard label loss (𝐿𝐶𝐸), serta feature alignment loss (𝐿𝐹𝐴) 

digabungkan menjadi total loss, yaitu: 

𝐿total = 𝛼𝐿𝐾𝐷 + (1 − 𝛼)𝐿𝐶𝐸 + 𝛽𝐿𝐹𝐴 (1) 

Dengan 𝛼 mengatur kontribusi distilasi logit, (1 − 𝛼)mengatur pembelajaran berbasis label asli, dan 𝛽 

mengendalikan seberapa kuat student dipaksa mengikuti representasi fitur teacher. Dengan kombinasi ketiga 

komponen tersebut, Hybrid KD mendorong student untuk meniru perilaku teacher bukan hanya pada level 

output (logit) tetapi juga pada level label serta struktur fitur internal, sehingga menghasilkan model student 

yang lebih akurat dan stabil. Parameter 𝛼 dan 𝛽 berperan penting dalam mengatur keseimbangan antara 

pembelajaran berbasis soft targets, hard labels, dan feature-level supervision. Parameter α mengontrol 

kontribusi logit-based knowledge distillation loss (𝐿𝐾𝐷) terhadap cross-entropy loss (𝐿𝐶𝐸) sedangkan parameter 

𝛽 mengatur kekuatan feature alignment loss (𝐿𝐹𝐴) dalam mendorong student untuk meniru representasi internal 

teacher. Nilai 𝛼 = 0.85 dipilih untuk memberikan dominasi pada pembelajaran dari soft targets teacher, yang 

mengandung informasi dark knowledge berupa hubungan antar kelas yang tidak sepenuhnya tercermin pada 

label keras (hard labels). Sementara itu, parameter β = 0.02 ditetapkan relatif kecil untuk memastikan bahwa 

feature alignment loss berfungsi sebagai regularizer tambahan, bukan sebagai tujuan utama optimasi. Berbagai 

studi [25], [26] menunjukkan bahwa penalti fitur yang terlalu besar dapat menyebabkan over-constraint, 

terutama ketika arsitektur teacher dan student berbeda, sehingga justru menghambat kemampuan student untuk 

belajar representasi yang optimal. 

2.4.5. Evaluasi Model Klasifikasi 

Metrik evaluasi merupakan komponen penting untuk menilai kinerja, efisiensi, dan kepraktisan model 

deep learning, khususnya dalam konteks knowledge distillation dan perancangan arsitektur ringan. Top-1 
accuracy mengukur seberapa sering prediksi dengan probabilitas tertinggi yang dihasilkan model sesuai 

dengan label ground truth, yang secara formal dinyatakan sebagai: 

𝑇𝑜𝑝 − 1 𝐴𝑐𝑐 =  
1

𝑁
∑ Ι. (arg max 𝑝𝑖 , 𝑐 =  𝑦𝑖)

𝑁
𝑖=1  (2) 

𝑁 adalah jumlah total sampel pengujian, 𝑝𝑖 , 𝑐 adalah probabilitas prediksi model untuk kelas 𝑐 pada 

sampel ke -𝑖, 𝑦𝑖 adalah label sebenarnya (ground truth) dari sampel ke-I, Ι. adalah fungsi indikator yang bernilai 

1 jika kondisi di dalamnya benar dan 0 jika salah. 

Selain itu, Top-5 Accuracy digunakan untuk mengukur apakah label kebenaran termasuk dalam lima 

kelas dengan probabilitas tertinggi yang diprediksi oleh model. Metrik ini sangat relevan pada tugas klasifikasi 

dengan jumlah kelas yang besar. 

𝑇𝑜𝑝 − 5 𝐴𝑐𝑐 =  
1

𝑁
∑ Ι. (𝑦𝑖 ∈𝑁

𝑖=1  𝑇𝑜𝑝 − 5(𝑝𝑖)) (3) 

𝑇𝑜𝑝 − 5(𝑝𝑖) merupakan himpunan lima kelas dengan probabilitas prediksi tertinggi untuk sampel ke-i. 

simbol lainnya memiliki makna yang sama seperti pada perhitungan Top-1 Accuracy. 

Untuk mengukur kompleksitas model, jumlah parameter dihitung sebagai total keseluruhan bobot yang 

dapat dipelajari (learnable weights) sebagai berikut: 

Total Parameter Model =  ∑ (𝐾𝑙 𝑥 𝐾𝑙 𝑥 𝐶𝑙
𝑖𝑛  𝑥 𝐶𝑙

𝑜𝑢𝑡𝐿
𝑙=1 𝑥 𝐶𝑙

𝑜𝑢𝑡 ) (4) 

𝐿 adalah jumlah layer pada model, 𝐾𝑙 adalah ukuran kernel, 𝐶𝑙
𝑖𝑛 merupakan jumlah channel input, 𝐶𝑙

𝑜𝑢𝑡 

adalah jumlah layer output. Pada penelitian ini juga melakukan pengukuran kompleksitas komputasi (G-Flops) 

yang merepresentasikan jumlah operasi floating point dalam satu kali forward pass sebagai berikut: 

GFLOPs =  ∑ (2 𝑥 𝐾𝑙
2 𝑥 𝐶𝑙

𝑖𝑛  𝑥 𝐶𝑙
𝑜𝑢𝑡𝐿

𝑙=1 𝑥 𝐻𝑙 𝑥 𝑊𝑙 )  ÷ 109 (5) 
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𝐾𝑙 adalah ukuran kernel konvolusi, 𝐶𝑙
𝑖𝑛 merupakan jumlah channel input, 𝐶𝑙

𝑜𝑢𝑡 adalah jumlah layer 

output, 𝐻𝑙 𝑥 𝑊𝑙  tinggi dan lebar feature map output, faktor 2 merepresentasikan operasi perkalian maupun 

penjumlahan,  ÷  109 merepresentasikan konversi ke dalam GFlops. Sementara itu juga dilakukan pengukuran 

waktu training dihitung berdasarkan jumlah epoch, ukuran batch, dan waktu komputasi per-iterasi, yang 

mencerminkan efisiensi model dalam proses pembelajaran. 

Total Waktu Training =  E x
𝑁𝑑𝑎𝑡𝑎

𝐵
𝑥 𝑡𝑖𝑚𝑒𝑖𝑡𝑒𝑟 (6) 

E merupakan jumlah epochs, 𝑁𝑑𝑎𝑡𝑎 merupakan jumlah data yang dilatih, 𝐵 adalah batch size, 𝑡𝑖𝑚𝑒𝑖𝑡𝑒𝑟 

adalah waktu komputasi per-iterasi (forward dan backward). 

 

3. HASIL DAN PEMBAHASAN 

Hasil eksperimen yang ditampilkan pada Tabel 6., menunjukkan variasi yang signifikan baik dari sisi 

akurasi maupun biaya komputasi pada berbagai model teacher yang dievaluasi. Di antara seluruh arsitektur, 

WideResNet-101 mencapai akurasi Top-1 tertinggi sebesar 88.44% dan akurasi Top-5 sebesar 99.08%, yang 

menegaskan kapasitas representasinya yang sangat kuat. Namun demikian, kinerja tersebut diperoleh dengan 

waktu komputasi terlama, yaitu 364.20 menit, yang menunjukkan adanya trade-off yang jelas antara akurasi 

dan efisiensi pelatihan. 

 
Tabel 6. Hasil performa training model teacher. 

 

Model Teacher 
Akurasi (%) Waktu Training 

(Menit) Top-1 Top-5 

DarkNet-53 65.79 97.00 82.82 

ResNet152 65.24 96.19 170.56 

RepVitM2-3 64.65 95.87 41.90 

EfficientNet-B3 81.51 97.88 114.37 

EfficientNet-B5 66.62 96.91 222.08 

WideResNet-50 87.71 98.54 191.04 

WideResNet-101 88.44 99.08 364.20 
 

Sebagai perbandingan, WideResNet-50 menghasilkan akurasi yang sedikit lebih rendah (Top-1: 

87.71%; Top-5: 98.54%), namun dengan waktu komputasi yang jauh lebih singkat (191.04 menit), sehingga 

memberikan keseimbangan yang lebih baik antara kinerja dan efisiensi. Model yang lebih ringan seperti 
RepViTM2-3 dan DarkNet-53 memiliki waktu komputasi yang jauh lebih cepat (masing-masing 41.90 menit 

dan 82.82 menit), tetapi akurasi Top-1 yang dicapai relatif lebih rendah, berkisar antara 64.65% – 65.79%, 

yang mengindikasikan keterbatasan pada kedalaman representasi fitur. EfficientNet-B3 menonjol sebagai 

alternatif yang efisien dengan mencapai akurasi Top-1 sebesar 81.51% dan waktu komputasi moderat (114.37 

menit), sehingga cocok untuk skenario yang membutuhkan kinerja tinggi dengan keterbatasan sumber daya.  

Secara keseluruhan, hasil ini menegaskan bahwa pemilihan model sangat bergantung pada 

keseimbangan antara akurasi dan biaya komputasi, di mana arsitektur yang lebih dalam cenderung memberikan 

performa yang lebih baik dengan konsekuensi waktu pelatihan yang lebih lama. Perbandingan kinerja antar 

model student yang ditunjukkan pada Tabel 7., juga memperlihatkan trade-off yang serupa. 
 

Tabel 7. Hasil performa training model student. 
 

Model Student 
Akurasi (%) Waktu Training 

(Menit) Top-1 Top-5 

MobileNetV2 38.50 97.80 54.42 

ResNet-8 65.98 97.17 93.55 

ShuffleNetV2 78.86 98.75 213.02 

EfficientNet-B0 69.22 97.55 149.86 

 

ShuffleNetV2 mencapai akurasi Top-1 tertinggi sebesar 78.86% dan akurasi Top-5 sebesar 98.75%, yang 

menunjukkan kemampuannya dalam menyerap representasi dari model teacher secara efektif. Namun, 

pencapaian ini disertai dengan waktu komputasi terlama di antara model student, yaitu 213.02 menit, sehingga 

menjadi model yang paling tidak efisien. Sebaliknya, MobileNetV2 menunjukkan waktu pelatihan tercepat 
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(54.42 menit), tetapi memiliki akurasi Top-1 terendah (38.50%), yang mengindikasikan keterbatasan arsitektur 

ringan dalam menyerap pengetahuan dari teacher tanpa proses distilasi. ResNet-8 dan EfficientNet-B0 berada 

di antara dua ekstrem tersebut, di mana ResNet-8 memberikan akurasi yang lebih baik dibandingkan 

MobileNetV2 dengan waktu pelatihan yang moderate, sementara EfficientNet-B0 mencapai akurasi Top-1 yang 

sedikit lebih tinggi dengan tambahan biaya komputasi. Untuk meningkatkan kinerja model student yang ringan, 

seluruh model tersebut kemudian menjalani proses knowledge distillation. Dengan mempertimbangkan 

keterbatasan sumber daya komputasi, WideResNet-50 dipilih sebagai model teacher, sedangkan MobileNetV2, 

yang memiliki akurasi dan waktu komputasi terendah, dipilih sebagai model student untuk mengevaluasi 

sejauh mana pengetahuan dapat ditransfer ke arsitektur yang sangat efisien. Beberapa strategi distilasi 

diterapkan, yaitu KD Hinton standar, KD Hinton dengan supervisi Hard Label, KD Hinton dengan tambahan 
penyelarasan fitur, serta pendekatan Hybrid KD yang mengombinasikan seluruh komponen tersebut. Tabel 8 

merupakan hasil perbandingan dari KD Hinton dan Hybrid KD yang diusulkan. 

 
Tabel 8. Perbandingan performa MobileNetV2: KD Hinton vs Hybrid KD Hinton. 

 

Model Student 

MobileNetV2 

Accuracy 
Computation Time Parameter (M) 

Top-1 Top-5 

KD Hinton 81.46 99.52 124.16 0.69 

KD Hinton + Hard Label 81.98 99.59 124.20 0.69 

KD Hinton + Feature Alignment 81.31 99.44 124.25 0.69 

Hybrid KD Hinton 82.07 98.80 125.08 0.69 
 

Hasil eksperimen distilasi yang ditampilkan pada Tabel 8., menunjukkan bahwa KD Hinton standar 

telah memberikan peningkatan signifikan pada akurasi Top-1 MobileNetV2 menjadi 81.46%, yang menegaskan 

manfaat supervisi soft label dari model teacher. Penambahan Hard Label meningkatkan akurasi Top-1 menjadi 

81.98%, yang menunjukkan bahwa informasi ground truth berperan penting dalam menstabilkan proses 

pembelajaran. Sebaliknya, penyelarasan fitur saja sedikit menurunkan akurasi Top-1 menjadi 81.31%, yang 

mengindikasikan adanya kendala optimasi ketika supervisi ruang fitur diterapkan pada arsitektur yang sangat 

ringan. Pendekatan Hybrid KD Hinton, yang mengombinasikan Soft Label, Hard Label, dan penyelarasan fitur, 

menghasilkan kinerja terbaik dengan akurasi Top-1 sebesar 82.07%, tanpa adanya peningkatan jumlah 

parameter model (tetap sebesar 0.69 juta). Meskipun waktu komputasi meningkat secara marginal, peningkatan 
akurasi yang diperoleh menunjukkan bahwa strategi distilasi hibrida mampu meningkatkan kualitas 

representasi model student secara efektif tanpa mengorbankan efisiensi, sehingga sangat sesuai untuk aplikasi 

klasifikasi penyakit kulit berbasis perangkat dengan sumber daya terbatas. 

 

4. KESIMPULAN 

Penelitian ini secara sistematis mengevaluasi efektivitas Hybrid Knowledge Distillation (Hybrid KD) 

dalam meningkatkan kinerja model student berarsitektur ringan pada tugas klasifikasi penyakit kulit, dengan 
mempertimbangkan secara eksplisit akurasi, waktu komputasi, kompleksitas model (parameter), dan biaya 

komputasi (GFLOPS). Eksperimen diawali dengan analisis komparatif berbagai arsitektur teacher model 

berkapasitas besar, mulai dari EfficientNet hingga WideResNet, untuk mengidentifikasi trade-off antara 

kekuatan representasi dan biaya pelatihan. Hasil pelatihan teacher menunjukkan bahwa WideResNet-101, 

dengan 124.85 juta parameter dan 22.83 GFLOPS, mencapai performa tertinggi (Top-1 88.44%; Top-5 

99.08%), namun memerlukan waktu pelatihan terlama sebesar 364.20 menit, sehingga kurang efisien untuk 

skenario praktis. Sebaliknya, WideResNet-50 menghasilkan akurasi yang hampir setara (Top-1 87.71%) 

dengan waktu pelatihan yang jauh lebih singkat (191.04 menit), sehingga dipilih sebagai teacher terbaik 

dengan keseimbangan optimal antara akurasi dan efisiensi. Model yang lebih ringan seperti RepViTM2-3 dan 

DarkNet-53 memang memiliki waktu pelatihan jauh lebih singkat, namun akurasi Top-1 yang rendah (≈65%) 

mengindikasikan keterbatasan kapasitas representasi untuk bertindak sebagai teacher yang efektif. Pada sisi 
student model, evaluasi awal tanpa distilasi menunjukkan bahwa MobileNetV2, meskipun sangat efisien 

dengan hanya 0.69 juta parameter dan 0.36 GFLOPS, memiliki performa Top-1 terendah (38.50%), 

menegaskan bahwa arsitektur sangat ringan tidak mampu mempelajari representasi diskriminatif secara 

optimal melalui pembelajaran konvensional. Model student lain seperti ShuffleNetV2 dan EfficientNet-B0 

mencapai akurasi lebih tinggi, tetapi dengan waktu pelatihan yang meningkat secara signifikan, sehingga 

mengurangi keunggulan efisiensi. Melalui penerapan Knowledge Distillation, khususnya dengan WideResNet-

50 sebagai teacher dan MobileNetV2 sebagai student, terjadi peningkatan performa yang sangat signifikan. KD 
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Hinton standar berhasil meningkatkan akurasi Top-1 MobileNetV2 dari 38.50% menjadi 81.46%, membuktikan 

efektivitas supervisi Soft Label dalam mentransfer pengetahuan. Penambahan Hard Label supervision 

meningkatkan stabilitas pembelajaran dan menghasilkan akurasi Top-1 sebesar 81.98%, sementara Feature 

Alignment secara tunggal tidak memberikan peningkatan optimal, menunjukkan adanya keterbatasan 

penyelarasan fitur pada arsitektur yang sangat ringan. Pendekatan Hybrid KD Hinton, yang mengombinasikan 
Soft Label, Hard Label, dan Feature Alignment, memberikan hasil terbaik dengan akurasi Top-1 sebesar 

82.07%, tanpa adanya peningkatan jumlah parameter model (tetap 0.69 juta parameter). Waktu komputasi 

hanya meningkat secara marginal (≈125 menit), yang masih jauh lebih efisien dibandingkan pelatihan teacher 

model berkapasitas besar. Hasil ini menegaskan bahwa Hybrid KD mampu meningkatkan kualitas representasi 

internal student secara efektif dengan biaya komputasi yang sangat rendah, menjadikannya solusi praktis untuk 

deployment pada perangkat dengan sumber daya terbatas.  

Secara keseluruhan, eksperimen ini menunjukkan bahwa Hybrid Knowledge Distillation secara efektif 

meminimalkan trade-off antara akurasi dan efisiensi, dengan mentransfer informasi diagnostik penting dari 

teacher berkapasitas besar ke student ringan tanpa menambah kompleksitas model saat inferensi. Pendekatan 

ini sangat relevan untuk aplikasi klasifikasi penyakit kulit berbasis citra pada sistem klinis tertanam dan 

perangkat mobile, di mana keterbatasan memori, waktu inferensi, dan konsumsi daya menjadi faktor krusial. 

Kedepannya, penelitian ini dapat dikembangkan dengan eksplorasi penyelarasan fitur adaptif, penentuan layer 
distilasi yang lebih selektif, serta evaluasi pada dataset medis yang lebih beragam untuk meningkatkan 

generalisasi dan keandalan sistem diagnosis berbasis kecerdasan buatan. 
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