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 Purpose: This research systematically compares the performance of K-

Nearest Neighbors (KNN), Random Forest (RF), and Support Vector Machine 

(SVM) in recognizing emotional and cognitive states from EEG data in a 

virtual reality (VR) environment. It aims to identify the model with the highest 

accuracy for each participant. 

Methods: EEG data were collected from four channels (TP9, AF7, AF8, 

TP10) with a data range of 0.0 - 1682.815 µV and a sampling rate of 2 Hz. 

The sampling rate is shallow compared to the standard EEG datasets. Features 

extracted included statistical measures (mean, standard deviation, skewness, 

kurtosis) and Hjorth parameters (activity, mobility, complexity), classifier 

(SVM,  RF, KNN). Each classifier’s performance was evaluated using 

accuracy, indicating the proportion of correctly classified instances. 

Result: RF achieved the highest average accuracy but showed more 

significant variability. SVM demonstrated a high median accuracy with 

consistent performance, as indicated by a narrow interquartile range (IQR) and 

few outliers. KNN exhibited the lowest median accuracy and highest 

variability, suggesting sensitivity to data characteristics and parameters. These 

findings highlight RF’s potential for consistent performance with careful 

tuning and SVM’s reliability. 

Novelty: The research’s novelty lies in its personalized performance analysis, 

evaluating each model’s accuracy individually for participants. This tailored 

approach reveals the best-performing model for each person, emphasizing 

customized machine-learning applications in VR-EEG systems. The study’s 

detailed, participant-specific evaluation enhances emotion and cognitive state 

recognition precision, advancing individualized VR therapeutic interventions 

and cognitive research methodologies. 
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1. INTRODUCTION 

Integrating EEG technology with virtual reality (VR) [1] systems has opened new avenues for enhancing 

therapeutic interventions and understanding cognitive processes. This synergy has been particularly beneficial 

in mental health treatments, cognitive studies, and the development of immersive environments tailored to 

individual needs. By analyzing brainwave responses during VR interactions, researchers can gain insights into 

emotional and mental states, paving the way for more effective and personalized therapeutic approaches. 

The VR-EEG [2] system has shown promise as a brief therapy for depressive symptoms, demonstrating 

comparable efficacy to Zoom online counselling. While roaming a virtual museum [3] did not impact positive 
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emotions, specific interactions, such as doodles and emojis, increased positive emotions. Different game genres 

elicit varied brainwave responses, suggesting the potential for tailored video game therapies in mental health. 

Tetris gameplay has been associated with heightened coherence and entropy values, mainly showing 

increased coherence between the frontal and temporal brain regions. VRET (Virtual Reality Exposure Therapy) 

technology [4], when integrated with EEG signals, enhances the precision of patient diagnoses, allowing for 

nuanced and individualized treatment within the VRET framework [5]. EEG applications in VR driving studies 

[6] have helped analyze cognitive processes, focusing on driver fatigue, navigation, obstacle avoidance, and 

monitoring technologies. Different microstates in EEG [7] are linked to emotions within the VR environment, 

with unique transitions observed between microstates during positive and negative emotions. 

Visual distractors [8] were found to reduce theta band activity in EEG signals, whereas auditory 

distractors enhanced alpha band activity. High classification accuracies were achieved when distinguishing 

between locomotion and resting states [9], although these accuracies decreased when movement and turning 

were considered. EEG signals have been used to classify immersion states in VR, with machine learning 

achieving high accuracy in differentiating difficulty levels. Free-form landscapes [10] induced higher alpha 

values in more brain regions and revealed subjective cognitive differences compared to regular-form 

landscapes. These subjective differences were observed consistently. 

An evaluation of neural responses [11] recorded using scalp EEG in VR highlighted potential noise 

interference in high-density EEG measurements. An EEG-based VR system that automatically generates 

emotion-adaptive scenes [12] was confirmed to be feasible and valuable through experimental studies. Multiple 

features, particularly theta band features, improved emotion recognition performance, excelling in decoding 

emotional valence. VR sickness [13] was found to be more significant with head-mounted displays (HMD) 

than screens, with alpha wave PSD changes observed in specific brain regions. EEG [14] has shown viability 

for real-time interactions in VR games, where simplified mean EEG values are adequate for non-serious 

applications. The frontal area of the scalp [15] was significant in classifying fear of heights, with gamma and 

high-beta bands being the most important in the EEG analysis. 

The experiment detailed [16] in the provided Excel data presents a unique and systematic comparison of 

machine learning models (KNN, RF, and SVM) across multiple participants. The primary contribution of this 

experiment is its thorough evaluation of these models in a VR-EEG setup, which involves measuring brainwave 

responses in a virtual reality environment. By identifying which model achieves the highest accuracy for each 

participant, the study provides valuable insights into how different models recognize emotional and cognitive 

states from EEG data. 

One key novelty of this experiment is its focus on personalized performance analysis. Instead of a one-

size-fits-all approach, the study examines model performance on an individual level, revealing which model 

works best for each participant. This personalized evaluation is crucial because it highlights the potential for 

tailored machine learning applications in VR-EEG systems, ensuring everyone receives the most accurate and 

effective analysis possible. 

Moreover, the experiment’s detailed analysis of accuracy trends helps identify each model’s general 

patterns and specific strengths. For example, despite its variability, the RF model shows the highest average 

accuracy, suggesting it may be particularly effective with careful tuning. Meanwhile, the SVM model stands 

out for its consistent performance, making it a reliable choice in many scenarios. This experiment advances the 

field by providing a clear, data-driven understanding of how different machine-learning models perform in a 

VR-EEG context. It underscores the importance of personalized model selection, paving the way for more 

precise and individualized therapeutic and cognitive applications in virtual reality environments. 

2. METHOD 

2.1 Dataset 

 Based on [17], 32 healthy participants, 7 females and 25 males aged between 23 and 45, were initially 

recruited for the experiment. However, the dataset has only 31 participants. For data collection, the experiment 

employed the EEG Headset Model “Muse 2016,” developed by Interaxon, and the “Mind Monitor” application 

created by James Clutterbuck. The Muse 2016 electrodes were positioned according to the 10-20 international 

EEG placement system at TP9, AF7, AF8, and TP10, with a reference at Fpz. 

 The Mind Monitor application was configured to record data in .csv format with a notch frequency set at 

50Hz (to account for the EU/230 Volts power system). The sampling rate was set at 2Hz, which, while 

providing low temporal resolution, posed challenges as we cannot extract EEG signature waves by using band-

pass filtering (for gamma, beta, alpha, delta, and theta waves). The raw EEG signal range recorded was between 

0.0 and 1682.815 µV. 
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 The sequence for presenting the VR videos to elicit emotional responses was structured as follows: each 

quadrant of the VR videos was given for 80 seconds, using four different videos per quadrant. To ensure 

participants’ mental states were reset before transitioning to the next emotional quadrant, a 10-second rest 

period was included between each video presentation. 

2.2 Feature extraction 

2.2.1. Statistic Features 

 Statistic features [18] are simple and valuable in finding the tendency for the signal to vary with time. 

Suppose there are m EEG signals simultaneously measured for emotion recognition of one subject. The length 

of one emotion segment sample is L0. Thus, an emotion EEG signal sample can be described as 𝑆 =
[𝑠1, 𝑠𝑖 , … , 𝑠𝑚]𝑇, where 𝑆 ∈ 𝑅𝑚×𝐿0, 𝑆 = [𝑠1, 𝑠2, … , 𝑠𝐿0

], and 𝑖 = 1, 2, … , 𝑚. Suppose there are Nstat statistics 

features extracted from an EEG signal si, then statistic feature of si  can be denoted as 𝐹𝑠𝑡𝑎𝑡 = [𝐹1, 𝐹𝑗, … , 𝐹𝑁𝑠𝑡𝑎𝑡
] 

where 𝑗 = 1, 2, … , 𝑁𝑠𝑡𝑎𝑡. The six statistic features of each si commonly used in time domain are the following: 

1.  Median 
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4. Variance 
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5. Skewness 
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6. Kurtosis 
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2.2.2 Hjorth parameters 

 Hjorth parameters [19] are a time domain feature that measures a signal’s complexity. It involves three 

features, i.e., Activity, Mobility, and Complexity. Activity measures the power of the signal. Mobility 

represents the mean frequency in the signal. Complexity captures the change in frequency. Hjorth parameters 

are practical EEG features [20], [21]. 

Activity: 

 
𝑎(𝑥) =

1

𝑛
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𝑛
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Where µx is the mean of x computed as per 2.2. 

Mobility: 
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Where �̇� is the time derivative of the time series x. Therefore, var (�̇�) and var(x) are computed as per 2.6 

Complexity: 

 
𝑐(𝑥) =

𝑚(�̇�)

𝑚(𝑥)
 

(9) 

Which is the mobility of the time derivative of x over the mobility of x. 

 

2.3 Classification 

2.3.1 Support Vector Machine (SVM) 

Support Vector Machines (SVM) is a robust set of supervised learning methods for classification, 

regression, and outlier detection. The primary goal of an SVM in classification is to find the optimal hyperplane 

that best separates the data into different classes. This hyperplane was chosen to maximize the margin, which 

is the distance between the hyperplane and the nearest data points from each class, known as support vectors. 

By maximizing this margin, SVMs aim to improve the model’s generalization ability to new, unseen data. 

SVMs can handle both linear and non-linear classification tasks. For non-linear data, SVMs use the 

“kernel trick” technique to transform the data into a higher-dimensional space where it becomes easier to find 

a separating hyperplane. Standard kernels include the polynomial kernel, radial basis function (RBF) kernel, 

and sigmoid kernel. This flexibility allows SVMs to tackle complex classification problems by handling 

various data structures and relationships effectively. 

2.3.2 Random Forest (RF) 

Random Forest (RF) is an ensemble learning method for classification and regression tasks. It operates 

by constructing multiple decision trees during training and outputting the class, the mode of the classes (for 

classification) or the mean prediction (for regression) of the individual trees. Each decision tree in the forest is 

built from a different sample of the data, created through bootstrapping, which involves randomly sampling 

the dataset with replacement. It helps create diverse trees, creating a more robust and accurate overall model. 

One of the critical advantages of Random Forest is its ability to handle many input features and estimate 

each feature’s importance in the prediction process. It is achieved by randomly selecting a subset of features at 

each split in the tree-building process, ensuring tree diversity and preventing overfitting. By averaging the 

results of many decision trees, Random Forest reduces variance and improves the model’s ability to generalize 

to new data, making it a versatile and powerful tool for various predictive tasks. 

2.3.3 K-Nearest Neighbors (KNN) 

K-Nearest Neighbors (KNN) is a simple yet effective supervised learning algorithm for classification 

and regression tasks. In KNN, the prediction for a new data point is based on the majority class (for 

classification) or the average value (for regression) of its nearest neighbours in the feature space. The ‘K’ in 

KNN refers to the closest neighbours considered when making predictions. 

KNN calculates the distance between the new point and all other points in the training dataset to 

predict the class or value for a new data point. Typical distance metrics used include Euclidean distance, 

Manhattan distance, and Minkowski distance. Once distances are computed, KNN identifies the ‘K’ nearest 

neighbours to the new data point and assigns the class or value based on the most frequent class (for 

classification) or the average (for regression) of these neighbours. The choice of ‘K’ is critical as it affects the 

bias-variance trade-off: smaller values of ‘K’ tend to have lower bias but higher variance, while larger values 

of ‘K’ have higher bias but lower variance. 

KNN is non-parametric and lazy learning because it does not assume any underlying data distribution and 

does not learn explicit models during training. Instead, it memorizes the entire training dataset, which can be 

computationally expensive for large datasets but allows for flexibility in handling complex decision 

boundaries. KNN is straightforward to implement and understand, making it particularly useful for small to 

medium-sized datasets where it can provide competitive performance compared to more complex algorithms. 

2.4 EEG Signal Classification Process 

The classification of EEG signals is following: 

1. EEG Signals 

EEG data with TP9, AF7, AF8, TP10 channels. The data range is between 0.0 - 1682.815 µV. The 

sampling rate is 2 Hz.  

2. Feature Extraction 

Features will be extracted from the EEG signals. It includes statistical features such as mean, standard 

deviation, skewness, and kurtosis, which provide insights into the distribution and variability of the signals. 
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Additionally, Hjorth parameters, including activity, mobility, and complexity, will be computed to capture 

signal amplitude and frequency characteristics. 

3. Classification Methods 

SVM will be utilized to classify the EEG signals based on the extracted features. SVM aims to find an 

optimal hyperplane that separates different classes with maximum margin. RF will be employed as an 

ensemble learning method where multiple decision trees are built using bootstrapped data samples. RF 

averages predictions from these trees to classify EEG signals. KNN will classify EEG signals by 

calculating distances to the ‘K’ nearest neighbours in the feature space. The class of the majority of these 

neighbours will determine the classification. 

4. Evaluation 

The performance of each classifier (SVM, RF, KNN) will be evaluated using accuracy, which measures 

the proportion of correctly classified instances out of the total cases. 

 

Following these steps, we can effectively classify EEG signals and evaluate the performance of SVM, RF, 

and KNN classifiers based on their accuracy in handling the extracted features, as shown in Figure 1.  

 

 
Figure 1. The classification flow chart 

 
3. RESULTS AND DISCUSSIONS 

Each participant is evaluated using different models, which are KNN (K-Nearest Neighbors), RF 

(Random Forest), and SVM (Support Vector Machine). There are several reasons for selecting the 

classification methods.  SVM is effective in high-dimensional spaces and suitable for binary classification 

tasks. It works by finding the optimal hyperplane that separates the classes, making it a powerful tool for 

datasets with many features. Random Forest is an ensemble method that combines multiple decision trees to 

improve accuracy and robustness. It is particularly effective in handling large datasets and provides high 

accuracy by averaging the results of numerous decision trees, thus reducing overfitting and variance. KNN is 

a simple, instance-based learning algorithm that classifies samples based on the majority class among the k-

nearest neighbours. It is particularly effective for smaller datasets and when the decision boundary is irregular, 

as it relies on the proximity of data points to make classifications. The method parameters for this study is 

shown in Table 1.  

Table 1. Methods parameters 

Feature Parameter 

Statistics n/a 

Hjorth Parameters n/a 

SVM C=0.01, kernel='linear' 

RF n_estimators=100 

KNN n_neighbors=3 
 

Figure 2 shows that the RF model frequently yields the highest accuracy across various participants. It 

might be due to its ability to effectively classify data points by finding the optimal separating hyperplane, 

especially in high-dimensional feature spaces. Consequently, RF is often the most reliable model for achieving 

high accuracy in diverse datasets. 
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Figure 2. The Accuracy of Each Participant with Different Classifier 

 

 
Figure 3. Highest Accuracy Trends Over Participants 

 

Figure 3 illustrates the highest accuracy trends among participants. Here are some observations: 

1. Variability 

The accuracy varies significantly across participants, indicating differing performance levels for the 

models used. 
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2. Peaks and Troughs 

There are notable peaks (e.g., participants 3, 20, 26, 28) where the highest accuracy is relatively high, 

suggesting that the models worked particularly well for these participants. Conversely, there are 

troughs where the accuracy is lower, indicating challenges in model performance. 

3. Consistency 
Some participants have similar accuracy levels, implying consistent performance of the models across 

those cases. 

 

As shown in Figure 4, the SVM model demonstrates a relatively high median accuracy, indicating good 

performance across many participants. The interquartile range (IQR), representing the middle 50% of the data, 

is narrow. It suggests consistent performance, as most accuracy values fall within a close range. The whiskers, 

which extend to the smallest and largest values within 1.5 times the IQR, are short, indicating few extreme 

values. Although there are a few outliers, they are not numerous, underscoring the model’s reliability and 

consistency. 

 

 
Figure 4. Accuracy Distribution per Model 

 
The RF model shows the highest median accuracy among the three models. The IQR for RF is broader 

than that of SVM, indicating more variability in the accuracy values. The wider IQR suggests that while the 

model often performs well, its performance can vary more than SVM. The whiskers are longer, and there are 

several outliers, reflecting occasional instances of both very high and low performance. This variability can be 

attributed to the ensemble nature of the RF model, which combines multiple decision trees. Despite the 

variability, the RF model’s high average accuracy makes it a strong contender, especially when adequately 

tuned ensemble techniques. 

The KNN model exhibits the lowest median accuracy among the three models. The IQR for KNN is 

relatively wide, indicating significant variability in accuracy. The whiskers extend further than those for SVM, 

and there are several outliers. It highlights KNN’s sensitivity to the choice of neighbours and the data structure. 

The high variability suggests that KNN’s performance can fluctuate widely depending on the dataset and the 

parameters used. Consequently, while KNN can be effective in some scenarios, it often requires careful 

parameter tuning and may not be as reliable as SVM or RF for consistent performance. 

In summary, despite its variability, the RF model stands out for its high average accuracy. With its 

consistent and generally high performance, SVM remains a reliable choice for many applications. KNN, while 

effective in some instances, shows the highest variability and lowest median accuracy, indicating it may need 

careful tuning and may not be as consistently reliable as the other models. These insights can guide the selection 

and tuning of models for different datasets, optimizing performance based on data characteristics. 

 

4. CONCLUSION 

In evaluating the accuracy distribution of the SVM, RF, and KNN models, we observe distinct 

performance characteristics: 

1. Random Forest (RF) shows the highest average accuracy among the three models. Despite its wider 

variability, reflected in a broader interquartile range (IQR) and longer whiskers, RF’s high accuracy 

makes it a strong choice for many applications. The presence of outliers suggests that while RF can 

occasionally perform exceptionally well, it may also require careful tuning to achieve consistent 

results. 
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2. Support Vector Machine (SVM) demonstrates a high median accuracy with a narrow IQR, 

indicating consistent performance. Its short whiskers and few outliers highlight its reliability and 

stable performance across different datasets. SVM stands out as a dependable model, especially in 

high-dimensional feature spaces. 

3. K-Nearest Neighbors (KNN) exhibits the lowest median accuracy and the most significant 

variability among the models. The wide IQR and numerous outliers indicate its sensitivity to 

parameter choices and data characteristics. While KNN can be effective in specific scenarios, it often 

requires careful tuning and may not offer the same level of consistent performance as RF or SVM. 

In summary, with its high average accuracy, the Random Forest model emerges as the top performer but 

demands careful tuning due to its variability. The SVM model is notable for its consistent and reliable 

performance, making it a dependable choice. The KNN model, while potentially effective, shows the highest 

variability and requires careful parameter tuning to achieve optimal results. These insights can guide model 

selection and tuning efforts to maximize performance based on specific dataset characteristics. 
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