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 The increasing complexity of stock market predictions necessitates advanced 

computational techniques to address the unique challenges posed by financial 

data's non-linear and volatile nature. This study aims to leverage Long Short-

Term Memory (LSTM) neural networks to accurately forecast stock prices, 

using historical data collected from a major banking corporation as a primary 

source. The LSTM model excels at processing sequential time-series data, 

allowing it to predict monthly stock closing prices over a one-year horizon 

with a high degree of precision. Our findings indicate a Root Mean Squared 

Error (RMSE) of 0.61, underscoring the model's efficiency and reliability in 

financial forecasting tasks. The novelty of this research lies in the systematic 

incorporation of preprocessing techniques and fine-tuned hyperparameters to 

optimize model performance. Furthermore, this study explores the practical 

implications of implementing LSTM models in real-world trading scenarios, 

analyzing their adaptability to dynamic market conditions and their potential 

integration into automated trading systems. These findings contribute to the 

growing body of knowledge in financial analytics and demonstrate the 

viability of machine learning-based solutions for accurate and robust market 

predictions. 
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1. INTRODUCTION  
 

Stock market prediction remains one of the most intricate and demanding challenges in the field of 

financial analytics due to the non-linear patterns and volatile nature of the market. Predicting future stock 

movements involves a multitude of factors, ranging from economic indicators and geopolitical events to 

investor sentiment and historical trends. Traditional statistical models, such as ARIMA, have long been used 

for time-series forecasting but often fall short when it comes to capturing complex temporal dependencies and 

non-linear relationships inherent in stock price movements. These limitations highlight the need for more 

advanced approaches that can handle the intricate nature of financial data. 

In recent years, the advent of machine learning has revolutionized the landscape of predictive 

analytics, with deep learning models like Long Short-Term Memory (LSTM) networks gaining significant 

traction. These models are uniquely suited for processing sequential data, allowing them to learn temporal 

patterns and dependencies over time effectively. Unlike traditional methods, LSTMs can retain information 

across longer sequences, making them particularly valuable for tasks involving time-series data. As a result, 
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they have emerged as a powerful tool for addressing the inherent complexities of stock market forecasting and 

enhancing the accuracy of predictions. 

The advantages of LSTMs over traditional statistical models have been widely documented in the 

literature. For instance, Nguyen et al. [1] emphasized how LSTM’s ability to manage long-term dependencies 

makes it superior in financial contexts. Similarly, Shorten and Khoshgoftaar [2] demonstrated that LSTM-

based architectures can capture non-linear trends and seasonal effects more effectively than ARIMA. These 

findings align with the observations by Vinayakumar et al. [3], who highlighted LSTM’s robustness in handling 

noisy and highly volatile datasets, a common characteristic of financial time-series data. 

Despite these advancements, a gap persists in optimizing LSTM models for consistent prediction 

intervals, particularly for monthly forecasting. Existing research often focuses on daily or hourly predictions, 

leaving a void in studies aimed at longer-term horizons like monthly forecasts. Addressing this gap, our 

research introduces an optimized LSTM architecture tailored for predicting monthly stock prices. The 

architecture integrates advanced preprocessing techniques and systematic hyperparameter tuning to achieve 

consistent and reliable outputs. Using historical stock data from a major banking corporation, this study 

demonstrates the utility of LSTM models in generating actionable financial forecasts. 

Moreover, the broader implications of this work extend beyond mere prediction. By embedding 

LSTM forecasts within a comprehensive financial analytics framework, the study provides tools for more 

informed decision-making. Investors can leverage these predictions to anticipate market movements, optimize 

portfolio strategies, and mitigate risks. Additionally, integrating such advanced models into automated trading 

systems could revolutionize how financial institutions operate, paving the way for more adaptive and data-

driven methodologies in trading and investment management. 

 

 

2. METHOD  

 

Dataset 

The dataset comprises historical daily stock prices of a major banking corporation, encompassing 

critical features such as Open, High, Low, Close, and Volume. The Open price is the price at which a stock 

starts trading when the market opens for the day. The High price is the highest price at which the stock traded 

during the day. The Low price is the lowest price at which the stock traded during the day. The Close price is 

the price at which the stock finishes trading when the market closes for the day. The Volume is the total number 

of shares traded during the day. 

This data spans a comprehensive period of 12 years, offering an extensive foundation for capturing 

both short-term and long-term patterns within the financial market. The data was sourced from publicly 

accessible financial records, ensuring its authenticity and enabling reproducibility. The inclusion of granular 

daily intervals allows the model to capture subtle market dynamics that could otherwise be missed in datasets 

with lower temporal resolution. Moreover, the diverse range of attributes enhances the model's capacity to 

analyze and learn from multiple aspects of market behavior, the data snippets provided in table 1. 

 

Table 1. Data Snippets 

 

Date Open High Low Close Volume 

12/07/2024 10.050 10.050 10.100 10.025 21,15M 

11/07/2024 10.075 10.000 10.125 10.000 55,91M 

10/07/2024 10.100 10.175 10.225 10.050 62,33M 

09/07/2024 10.075 10.100 10.150 10.075 61,85M 

08/07/2024 10.050 10.000 10.050 9.950 72,90M 

 

Data Preprocessing 

Preprocessing is a vital step in preparing the data for effective learning and prediction. In this study, 

the “Close” price was selected as the primary feature for forecasting, as it serves as a key finansial of a stock’s 

performance at the end of a trading session. The dataset was normalized using MinMaxScaler, which scaled 

all values to a range between 0 and 1. This normalization ensured that all features contributed equally to the 

learning process, preventing any single feature from disproportionately influencing the model’s performance. 

To further structure the data, a sliding window technique was employed, where sequences of 30 consecutive 

days were used to predict the closing price of the subsequent day. This method enabled the model to effectively 

capture temporal dependencies within the dataset, providing a clear structure for time-series learning. 

Additionally, preprocessing steps were designed to ensure minimal data loss and maintain the integrity of the 

original dataset. 
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Model Architecture and Hyperparameter Tuning 

The architecture of the LSTM model was carefully designed to balance computational efficiency with 

the need for high predictive accuracy. The input layer was configured to process sequences of 30 time steps, 

each consisting of a single feature, aligning with the sliding window approach. Two LSTM layers, each 

containing 50 units, were incorporated into the architecture to capture both short-term and long-term 

dependencies in the stock price data. To enhance generalizability and reduce the risk of overfitting, Dropout 

layers with a 20% rate were applied after each LSTM layer. These layers ensured that the model did not become 

overly reliant on specific neurons during training, fostering a more robust learning process. The output layer 

featured a dense neuron, which synthesized the extracted features into a single predicted closing price. This 

streamlined architecture was selected for its ability to scale effectively with larger datasets while maintaining 

high performance across various finansial forecasting tasks.  

The LSTM architecture consists of five layers designed to predict stock prices based on historical 

data. The first layer is an LSTM layer (lstm_6) with an input shape of (None, 30, 1), where None allows for 

variable batch sizes, 30 represents the number of time steps, and 1 indicates the number of features (the scaled 

closing prices). This layer outputs a sequence of 30 time steps, each with 50 units, resulting in an output shape 

of (None, 30, 50). LSTM architecture is shown in Figure 1. 

 

 
Figure 1 LSTM Architecture  

 

Following the first LSTM layer is a Dropout layer (dropout_6), which maintains the same input shape 

of (None, 30, 50). This layer randomly drops a percentage (typically 20%) of the neurons during training to 

prevent overfitting, ensuring that the model generalizes well to unseen data. 

The second LSTM layer (lstm_7) processes the output from the first dropout layer. Its input shape 

is (None, 30, 50), 110ndi t condenses the sequence of 30 time steps into a single output for the entire sequence, 

resulting in an output shape of (None, 50). This layer captures the temporal dependencies in the data more 

effectively. Another Dropout layer (dropout_7) follows, with an input shape of (None, 50). Similar to the 

previous dropout layer, it drops a percentage of the neurons to help prevent overfitting, while maintaining the 

output shape of (None, 50). Finally, the architecture concludes with a Dense layer (dense_3), which has an 
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input shape of (None, 50) and outputs a single value with a shape of (None, 1). This layer compresses the 50 

units from the previous LSTM layer down to one unit, representing the predicted closing price. 

In summary, the architecture is designed to predict the next closing price based on the previous 30 

days of prices, utilizing dropout layers for regularization and ensuring robust performance during training. 

Table 2 details the explored architectures and their performance metrics. The final architecture which used in 

this research is architecture 4 was selected because its superior performance on the validation set. 

Here’s the updated data formatted into a table: 

 

Table 2. LSTM Architectures 

 

Architecture LSTM Layers Units/Layer Dropout Activation MSE RMSE MAE 

1 2 500 0.2 ReLU 0.52 0.72 0.58 

2 3 500 0.2 ReLU 0.47 0.68 0.40 

3 4 500 0.2 ReLU 0.40 0.65 0.32 

4 5 500 0.2 ReLU 0.38 0.61 0.23 

5 5 1000 0.2 ReLU 0.40 0.65 0.30 

6 6 500 0.2 ReLU 0.39 0.64 0.28 

 

 

Training Configuration 

The training process was meticulously configured to optimize the LSTM model's predictive capabilities. 

The Mean Squared Error (MSE) loss function was chosen due to its ability to penalize large errors, a critical 

aspect in financial forecasting where precision is paramount. The Adam optimizer was utilized for its adaptive 

learning capabilities, which ensured efficient convergence during the training phase. The model underwent 

training over 30 epochs with a batch size of 32, striking a balance between computational efficiency and the 

thoroughness of learning. The dataset was split into training and testing sets, with 80% allocated for training 

and 20% reserved for testing. This allocation provided the model with ample data for learning while retaining 

a substantial portion for unbiased evaluation. Regular evaluation checkpoints were employed throughout the 

training process to monitor the model's performance and ensure that it avoided overfitting. Additionally, 

consistent random seeds were set to guarantee the reproducibility of results, allowing other researchers to 

validate and build upon the findings presented in this study. 

 
3. RESULTS AND DISCUSSIONS  

 

The model's performance was evaluated using RMSE and visual comparisons of predicted versus actual 

prices. The results underscore the effectiveness of LSTM in handling the intricacies of financial time-series 

data. The LSTM model achieved a Root Mean Squared Error (RMSE) of 0.61, a Mean Squared Error (MSE) 

of 0.38, a Mean Absolute Error (MAE) of 0.23 and a Mean Absolute Percentage Error (MAPE) of 2.12%. 

These metrics demonstrate the model's capability to closely approximate actual stock price movements, 

outperforming traditional statistical approaches in similar datasets. A summary of these evaluation metrics with 

comparison between LSTM and traditional statistical approaches (linear regression) is provided in Table 3. 

 

Tabel 3. Metric Evaluation 

Metric LSTM Linear Regression 

MSE 0.38 26.13 

RMSE 0.61 5.1 

MAE 0.23 3.85 

MAPE 2.12% 35% 

 

 The significantly lower MSE and RMSE values of the LSTM model compared to the linear regression 

model (MSE = 26.13, RMSE = 5.1) highlight the limitations of linear regression in capturing the complex 

non-linear relationships inherent in stock price data. Linear regression's high error metrics (MSE = 26, RMSE 

= 5.1, MAE = 3.85, MAPE = 35%) suggest its inadequacy in modeling the intricate temporal dependencies 

and volatility characteristic of financial time series. The LSTM model's superior performance underscores its 

ability to learn and adapt to these complexities, resulting in substantially more accurate predictions. The 

substantially lower MAE (0.55 vs 3.85) and the absence of a MAPE for the LSTM model further emphasize 

its improved accuracy. The relatively low MSE and RMSE values for the LSTM model suggest its capability 

to approximate actual stock price movements with greater precision than linear regression. 
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 Figure 2 illustrates the predicted versus actual stock prices for the testing dataset, showing a strong 

alignment between the two. This visual validation confirms the robustness of the model in capturing temporal 

patterns and its adaptability to real-world financial data. 

 

 
Figure 2. Predicted vs Actual Stock Prices 

  

 The results confirm the suitability of LSTM models for financial time-series forecasting. The strong 

performance metrics and visual alignment highlight the model's capacity to address challenges such as non-

linearity and volatility in stock data. However, certain limitations, such as sensitivity to hyperparameter settings 

and scalability for larger datasets, warrant further research. Incorporating additional features like 

macroeconomic indicators, geopolitical events, and sentiment analysis could significantly enhance prediction 

accuracy. Moreover, the potential for integrating LSTM models into automated trading systems presents an 

exciting avenue for future exploration. 

 

4. CONCLUSION  

This study emphasizes the effectiveness of Long Short-Term Memory (LSTM) neural networks in 

forecasting a major banking corporation stock prices, highlighting the importance of robust preprocessing 

techniques and sophisticated model architecture design. The model achieved a Root Mean Squared Error 

(RMSE) of 0.61, showcasing its capacity to address the inherent complexities of financial time-series data, 

including non-linearity, seasonality, and market volatility. These results underscore the potential of LSTM 

models to outperform traditional forecasting approaches in capturing intricate temporal dependencies. 

The research also underscores the critical role of rigorous data scaling methods and meticulous 

hyperparameter tuning in achieving superior predictive accuracy. Through effective temporal modeling, the 

LSTM model exhibited reliable performance, successfully generating monthly forecasts with high precision. 

Future work could benefit from integrating macroeconomic indicators, such as interest rates and GDP growth, 

along with sentiment analysis derived from news and social media, to further enhance the model's predictive 

capabilities. The exploration of hybrid approaches that combine LSTM with complementary machine learning 

algorithms, such as Random Forests or XGBoost, could offer more holistic solutions for tackling complex 

financial forecasting challenges. 

In conclusion, this study contributes to the evolving field of financial analytics by presenting a scalable 

and adaptable framework for stock price prediction. The insights and methodologies developed in this research 

have practical implications for various stakeholders, including investors, analysts, and financial institutions, 

enabling more data-driven and informed decision-making in the ever-dynamic financial markets. 
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