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 Purpose: The purpose of this study is to explore the integration of EEG 

technology with virtual reality (VR) systems to enhance therapeutic 

interventions, improve cognitive state recognition, and develop personalized 

immersive experiences. Specifically, it investigates the classification of EEG 

signals in a VR environment using machine learning models and identifies the 

most effective methods for individual-level analysis. 

Methods: The study utilized EEG data collected from 31 participants using 

the Muse 2016 headset, with electrodes positioned according to the 10-20 

international system. EEG signals were analyzed for features such as statistical 

metrics (mean, median, standard deviation, skewness, and kurtosis) and Hjorth 

parameters (activity, mobility, complexity). Machine learning models, 

including K-Nearest Neighbors (KNN), Random Forest (RF), and Support 

Vector Machine (SVM), were evaluated for their performance in classifying 

emotional and cognitive states in a VR environment.  

Result: Integrating EEG with VR technology has transformed therapeutic 

interventions and cognitive research, providing deeper insights into emotional 

and mental states for personalized treatments. The VR-EEG system has shown 

comparable effectiveness to traditional therapies, with specific VR 

interactions, like emojis, boosting emotional responses. EEG analysis in VR 

gaming and Virtual Reality Exposure Therapy (VRET) has improved 

diagnostic precision, achieving 96.93% accuracy with a standard deviation of 

0.0214 for emotion recognition tasks. Different game genres and VR 

environments triggered distinct brainwave reactions, with free-form 

landscapes enhancing alpha wave activity. Despite some challenges, such as 

noise interference in high-density EEG, the integration of EEG and VR offers 

significant potential for advancing mental health care and research. 

Novelty: This study is novel in its focus on personalized machine learning 

model performance in a VR-EEG setup. Instead of a one-size-fits-all 

approach, it emphasizes individualized analysis, identifying the most effective 

model for each participant.  
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1. INTRODUCTION 

The fusion of EEG technology with virtual reality (VR) [1] has revolutionized therapeutic approaches 

and shattered conventional boundaries in cognitive research. This powerful combination is proving to be a 

game-changer in mental health treatments, cognitive investigations, and the creation of hyper-targeted 

immersive environments. By analyzing brainwave responses during VR engagement, researchers are gaining 
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unparalleled insights into emotional and mental states, driving the development of more personalized and 

highly effective therapeutic strategies. 

The VR-EEG [2] system has emerged as a potent short-term therapy for depressive symptoms, 

demonstrating efficacy that rivals traditional methods like Zoom-based online counseling. While a virtual 

museum experience had no impact on positive emotions, specific interactive elements, like doodles and emojis, 

produced a noticeable spike in positive emotional responses. Furthermore, different video game genres provoke 

distinct brainwave reactions, opening the door to highly customized game-based therapies for mental health. 

Tetris, a seemingly simple game, has been shown to generate increased coherence and entropy in 

brainwave activity, particularly amplifying coherence between the frontal and temporal regions of the brain. 

When combined with EEG data, Virtual Reality Exposure Therapy (VRET) [3] has enhanced the precision of 

diagnoses, enabling highly individualized treatments within its framework. EEG applications in VR driving 

[4] simulations have provided critical insights into cognitive processes like driver fatigue, navigation, obstacle 

avoidance, and real-time monitoring [5]. Distinct EEG microstates [6] reveal the emotional shifts within VR 

environments, with sharp transitions between microstates linked to positive or negative emotions. 

Visual distractions [7] were found to drastically suppress theta band activity in EEG signals, while 

auditory distractions had the opposite effect, boosting alpha band activity. High classification accuracies were 

achieved in distinguishing locomotion  [8] from resting states, though these numbers drop when movement 

and turning are introduced. EEG also proved its worth in classifying immersion states in VR, with machine 

learning algorithms achieving impressive accuracy in differentiating levels of challenge. Free-form VR [9] 

landscapes induced stronger alpha activity across a broader range of brain regions, revealing profound 

cognitive differences compared to structured landscapes and these differences were consistently observed. 

EEG studies in VR environments have revealed the potential for significant noise interference, especially 

with high-density [10] EEG systems. However, experimental studies have proven that EEG-driven VR systems 

capable of adapting scenes [11]  based on emotional responses are not only possible but highly valuable. 

Specifically, theta band features have proven critical in improving emotion recognition, particularly in 

decoding emotional valence. VR sickness [12] was found to be far more intense with head-mounted displays 

(HMDs) than traditional screens, accompanied by notable changes in alpha wave power in certain brain 

regions. EEG [13] has proven to be a viable tool for real-time interactions in VR games, where even simplified 

EEG metrics suffice for non-critical applications. The frontal region of the scalp [14]  is particularly important 

for classifying the fear of heights, with gamma and high-beta bands playing dominant roles in these analyses. 

In summary, the integration of EEG technology with VR systems offers significant potential for 

advancing therapeutic, cognitive, and immersive applications. By leveraging EEG's ability to capture real-time 

neural responses, VR environments can be tailored to enhance emotional well-being, refine therapeutic 

interventions, and deepen our understanding of cognitive processes. This combination not only enables the 

creation of adaptive VR experiences but also fosters innovative approaches to mental health treatments, such 

as emotion-adaptive therapies, precision diagnostics, and real-time neurofeedback systems. As research 

continues to explore these synergistic technologies, their application is poised to transform fields ranging from 

psychology and neuroscience to education and entertainment, driving the development of highly personalized 

and effective solutions for a variety of challenges. 

2. METHOD 

2.1 Dataset 

 The dataset was collected by Suhaimi et al. [15].  A total of 32 healthy participants, consisting of 7 females 

and 25 males aged between 23 and 45, were initially recruited. However, the final dataset included only 31 

participants. The data collection process utilized the Muse 2016 EEG Headset, developed by Interaxon, along 

with the Mind Monitor application, created by James Clutterbuck. The EEG electrodes of the Muse 2016 were 

positioned according to the 10-20 international EEG system at TP9, AF7, AF8, and TP10, with a reference 

placed at Fpz. The Mind Monitor app was configured to record data in CSV format, with a notch filter set to 

50Hz to accommodate the EU/230V power supply. The sampling rate was set to 2Hz, which, while providing 

limited temporal resolution, presented challenges in extracting EEG signature waves (such as gamma, beta, 

alpha, delta, and theta) through band-pass filtering. The raw EEG signal ranged from 0.0 to 1682.815 µV. The 

sequence of VR video presentations, designed to elicit emotional responses, was structured as follows: each 

emotional quadrant of the VR videos was shown for 80 seconds, with four different videos for each quadrant. 

A 10-second rest period was included between each video to help reset participants' mental states before 

transitioning to the next emotional quadrant. 

2.2 Feature extraction 

2.2.1. Statistic Features 

 Statistic features [16] are simple and valuable in finding the tendency for the signal to vary with time. 

Suppose there are m EEG signals simultaneously measured for emotion recognition of one subject. The length 

of one emotion segment sample is L0. Thus, an emotion EEG signal sample can be described as 𝑆 =
[𝑠1, 𝑠𝑖 , … , 𝑠𝑚]𝑇, where 𝑆 ∈ 𝑅𝑚×𝐿0, 𝑆 = [𝑠1, 𝑠2, … , 𝑠𝐿0

], and 𝑖 = 1, 2, … , 𝑚. Suppose there are Nstat statistics 
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features extracted from an EEG signal si, then statistic feature of si  can be denoted as 𝐹𝑠𝑡𝑎𝑡 = [𝐹1, 𝐹𝑗, … , 𝐹𝑁𝑠𝑡𝑎𝑡
] 

where 𝑗 = 1, 2, … , 𝑁𝑠𝑡𝑎𝑡. The six statistic features of each si commonly used in time domain are the following: 

1.  Median 
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5. Skewness 
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6. Kurtosis 
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2.2.2 Hjorth parameters 

 Hjorth parameters [17] are a time domain feature that measures a signal’s complexity. It involves three 

features, i.e., Activity, Mobility, and Complexity. Activity measures the power of the signal. Mobility 

represents the mean frequency in the signal. Complexity captures the change in frequency. Hjorth parameters 

are practical EEG features [18], [19]. 

Activity: 

 
𝑎(𝑥) =

1

𝑛
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Where µx is the mean of x computed as per 2.2. 

Mobility: 

 

𝑚(𝑥) = √
𝑣𝑎𝑟(�̇�)

𝑣𝑎𝑟(𝑥)
 

(8) 

 

Where �̇� is the time derivative of the time series x. Therefore, var (�̇�) and var(x) are computed as per 2.6 

Complexity: 

 
𝑐(𝑥) =

𝑚(�̇�)

𝑚(𝑥)
 

(9) 

Which is the mobility of the time derivative of x over the mobility of x. 
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2.3 Deep Neural Network 

 

The classification of EEG signals is as follows: 

1. EEG Signals 

EEG data with TP9, AF7, AF8, TP10 channels. The data range is between 0.0 - 1682.815 µV. The 

sampling rate is 2 Hz.  

2. Feature Extraction 

Features will be extracted from the EEG signals. It includes statistical features such as mean, standard 

deviation, skewness, and kurtosis, which provide insights into the distribution and variability of the signals. 

Additionally, Hjorth parameters, including activity, mobility, and complexity, will be computed to capture 

signal amplitude and frequency characteristics. 

3. Deep Neural Network (DNN) 

A Deep Neural Network (DNN) will be employed as the classifier for EEG signal data. DNNs are powerful 

machine learning models capable of capturing complex relationships in data due to their multiple layers 

of interconnected neurons as simplified in Figure 1. Input Layer: The extracted features from EEG signals, 

such as statistical metrics (mean, standard deviation, skewness, kurtosis) and Hjorth parameters (activity, 

mobility, complexity), will serve as input features. Hidden Layers: Several hidden layers will be included, 

using activation functions like ReLU (Rectified Linear Unit) to introduce non-linearity, enabling the 

network to learn complex patterns in the data. Output Layer: A softmax or sigmoid activation function 

will be used, depending on whether the classification problem is binary or multi-class. The output layer 

will provide class probabilities for each EEG signal instance. Optimization: The model will be trained 

using optimization algorithms such as Adam or SGD (Stochastic Gradient Descent) with a learning rate 

chosen through hyperparameter tuning. Loss Function: A suitable loss function like categorical cross-

entropy (for multi-class classification) or binary cross-entropy (for binary classification) will be utilized 

to minimize classification errors during training. The DNN structure will be tailored to the dataset, 

considering the number of features and expected complexity of the EEG signal classification problem. 

Regularization techniques such as dropout and batch normalization may be applied to prevent overfitting, 

ensuring the model generalizes well to unseen data. 

 
Figure 1. A Four-layer neural network. 

4. Evaluation 

The performance will be evaluated using accuracy, which measures the proportion of correctly classified 

instances out of the total cases.  

 

Following these steps, we can effectively classify EEG signals and evaluate the performance of LSTM 

based on their accuracy in handling the extracted features, as shown in Figure 2.  

 

 
 

Figure 2. The classification flow chart 
 
3. RESULTS AND DISCUSSIONS 
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Figure 3 illustrates the performance trends of three machine learning algorithms—SVM, KNN, and 

DNN—across multiple subjects. The deep neural network (DNN) consistently outperforms the other 

algorithms, with an average accuracy of 0.9693, highlighting its ability to capture complex patterns in the data. 

This aligns with the architecture of deep neural networks, which are designed to model intricate, high-

dimensional, and non-linear relationships effectively. In comparison, SVM and KNN achieved average 

accuracies of 0.8008 and 0.8650, respectively, underscoring DNN’s superiority in this scenario. 

 
Figure 2. The Performance Comparison 

 

The DNN model used here is specifically tailored for multi-class classification. It consists of two hidden 

layers with 64 and 32 neurons, respectively, both utilizing ReLU activation functions. These layers 

progressively learn features from the input data, enhancing the model’s ability to differentiate between the four 

classes. The output layer employs a softmax activation, converting the network's outputs into probabilities for 

accurate classification. This architecture contributes to DNN’s superior performance, as it is well-suited for 

tasks requiring advanced feature extraction. 

 

 
Figure 3. The Box Plot of SVM, KNN, and DNN Accuracy 

 

As Shown in Figure 3, DNN also demonstrates greater stability, with a standard deviation of 0.0214, 

reflecting its consistent performance across different subjects. In contrast, SVM has a standard deviation of 

0.0918, and KNN’s standard deviation is 0.0538, indicating that the other algorithms are more prone to 
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fluctuations in their performance. While SVM provides a reliable baseline and KNN offers a simpler, more 

interpretable approach, DNN’s higher performance and lower variance underscore its capacity to handle 

complex data effectively. However, DNN also comes with trade-offs, such as greater computational demands 

and the potential for overfitting. Techniques like dropout, batch normalization, and hyperparameter tuning can 

help mitigate these issues, further enhancing the DNN model's robustness. Overall, the results confirm the 

advantages of DNN for tasks that require sophisticated feature learning and high classification accuracy, as 

evidenced by both its higher average accuracy and lower standard deviation. 

4. PERFORMANCE COMPARSISON WITH SIMILAR RESEARCH 

Table 1 summarizes the performance of various machine learning methods for the task at hand, with a 

focus on the accuracy achieved by different models. Our deep neural network (DNN) model, which achieved 

an accuracy of 96.93%, is compared against several other methods from the literature. 

 

Table 1. The Previous Research Performance Comparison 
Reference Year Method Accuracy 

[15] 2022 SVM 97.66 

[20] 2024 XGBoost 95.0 

[20] 2024 Random Forest 92.0 

[21] 2024 FBSA-Net 96.63 

Our 2024 DNN 96.93 

 

The Support Vector Machine (SVM) [15] proposed by  Suhaimi et al. achieved an accuracy of 97.66% in 

the study. SVM is known for its robustness, especially in high-dimensional spaces, and has been widely used 

for classification tasks. While its accuracy in this case is slightly higher than our DNN, it may come with trade-

offs such as longer training times or sensitivity to parameter tuning, especially for complex datasets. Jimenez 

et al implemented the XGBoost [20], known for its efficiency and strong performance on structured data, 

achieved an accuracy of 95.0%. XGBoost is an ensemble learning algorithm based on decision trees and has 

become a popular choice for many machine learning competitions. Its accuracy is slightly lower than DNN, 

but it often provides competitive results with faster training times and reduced computational requirements. 

They also experimented with the Random Forest (RF) [20] algorithm, also an ensemble method based on 

decision trees, and achieved 92.0% accuracy. RF is known for being less prone to overfitting compared to 

individual decision trees and can handle large datasets well. However, its performance in this study is lower 

compared to both DNN and XGBoost, possibly due to its less sophisticated ability to model complex, non-

linear relationships in the data. The Frequency-Band-Spatial-based Attention Network (FBSA-Net) [21] was 

proposed by Xie et al. It combines feature selection or attention mechanisms in its architecture, achieved 

96.63% accuracy. FBSA-Net shows strong performance, approaching that of our DNN, but slightly lags in 

terms of accuracy. 

Our DNN model achieved an accuracy of 96.93%, which is the highest among the listed methods. The 

DNN’s superior performance highlights its ability to learn complex patterns from high-dimensional data, 

making it particularly effective for tasks that require deep feature extraction. The DNN architecture employed 

two hidden layers with 64 and 32 neurons, leveraging ReLU activation functions and a softmax output layer 

for multi-class classification. While the SVM from [15] offers the highest accuracy of 97.66%, the DNN 

achieves 96.93%, which is still highly competitive and demonstrates its robustness. The DNN also has the 

advantage of being well-suited for handling non-linear relationships and high-dimensional data. Compared to 

other methods like XGBoost (95.0%), Random Forest (92.0%), and FBSA-Net (96.63%), the DNN’s 

performance is highly competitive, with the added benefit of being able to scale effectively to more complex 

datasets. The slight differences in accuracy between these methods suggest that DNN, while not always 

outperforming simpler models, remains highly effective for tasks that demand advanced learning capabilities. 

Moreover, the DNN’s flexibility and adaptability make it a strong choice for future applications in complex, 

multi-class classification problems. 

5. CONCLUSION 

This study demonstrates the transformative potential of integrating EEG technology with VR systems in 

therapeutic, cognitive, and immersive applications. The combination of brainwave analysis and VR 

environments enables personalized therapeutic interventions, advanced cognitive state recognition, and 

insights into user emotional responses. 

Our key findings include: 

1. The integration of EEG with VR opens doors for applications like VRET, mental health 

treatments, and real-time monitoring of cognitive and emotional states. This approach tailors’ 

therapy to individual needs. 



120 Agastya, et al. / INTECHNO: Inf. Tech. J., Vol. 6, No. 2 December 2024 :  114 – 121 

 

 

 

 

 

2. The comparative analysis of machine learning models (DNN, SVM, KNN) highlights the 

superiority of DNN in accurately classifying emotional and cognitive states due to its ability to 

capture complex and high-dimensional patterns. 

3. The use of statistical features and Hjorth parameters proves to be an effective way to distil 

meaningful insights from EEG data. 

4. A key contribution of the study is its focus on personalized model selection, emphasizing that 

different machine learning algorithms suit different participants, paving the way for individualized 

therapeutic applications. 

The VR-EEG synergy holds promise for future research and development, particularly in enhancing 

mental health treatments, improving cognitive studies, and enabling immersive user experiences. Further 

studies could refine model performance, incorporate real-time analysis, and explore new applications for this 

innovative technology. 
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