s Intechno Journal : 2% INTECHNO Journal

NFORMATION TECHNOLOGY JOURNA

Information Technology Journal
Vol. 7 No. 2 December 2025

e-ISSN: 2655-1438
p-1SSN: 2655-1632

Homepage: https://jurnal.amikom.ac.id/index.php/intechno

An Advanced Deep Learning Approach for Automatic Disease
Recognition and Classification in paddy leaf disease detection

Robert Marco?, Alva Hendi Muhammad?, Nur Aini3, Yana Hendriana*
12 Magister of Informatics, Faculty of Computer Science, Universitas AMIKOM Yogyakarta, Yogyakarta, Indonesia
SInformatics, Faculty of Computer Science, Universitas AMIKOM Yogyakarta, Yogyakarta, Indonesia
“Informatics, Faculty of Information Technology, Universitas Nahdlatul Ulama Yogyakarta, Yogyakarta, Indonesia

Article Info

ABSTRACT

Article history:

Received: 18 December 2025
Revised: 24 December 2025

Accepted: 30 December 2025
Published: 31 December 2025

Purpose: Accurate detection of paddy leaf diseases is essential to ensure
optimal crop yield and effective disease management.

Methods/Study design/approach: This study presents a CNN-LSTM-
Attention model for improving classification performance by effectively
capturing spatial, temporal, and contextual feature dependencies. The
experimental results demonstrate that the proposed model consistently

outperforms widely used deep learning architectures, including MobileNetV2,
VGG16, and a custom CNN, across all evaluation metrics.

Result/Findings: Experimental results demonstrate that the proposed
approach consistently outperforms the comparative models, achieving an
accuracy of 95.5%, precision of 98.12%, recall of 98.3%, and a Macro-AUC
of 0.994. These results indicate that the attention-enhanced sequential
modeling significantly improves both class separability and overall
robustness.

Novelty/Originality/Value: The findings confirm that the proposed CNN-
LSTM-Attention model provides a reliable and effective solution for complex
classification tasks, offering strong generalization performance and high
suitability for real-world deployment.
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1. INTRODUCTION

Paddy is the primary food source for more than half of the world’s population [1]. It is cultivated on over
three-fifths of global agricultural land, accounting for 61.54% of the total area. Indonesia is currently the fourth-
largest paddy producer in the world, after China, India, and Bangladesh [2]. Unfortunately, plant pathogens
and pests significantly contribute to yield reduction, with their impact largely influenced by seasonal conditions
and unfavorable environmental factors, ultimately leading to economic and social losses [3]. Paddy diseases
cause severe damage to agriculture, resulting in substantial yield losses and posing a threat to food security
[4][5]. The urgency of this research lies in the fact that rice leaf diseases have caused yield reductions of 30—
50% in several major production centers.

The determination of disease severity in paddy plants is often based on the extent and distribution of
infection on the leaf surface [6]. Paddy crops are susceptible to diseases such as bacterial blight, brown leaf
spot, leaf blast, and false smut [7]. Bacterial blight can inhibit photosynthesis and plant growth, while brown
leaf spot reduces productivity. Leaf blast causes leaf fragility and hinders panicle formation, and false smut
decreases grain quality [4][7]. The challenge is that manual detection of paddy leaf diseases is time-consuming,
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prone to errors, costly, and often relies on subjective visual inspection due to the complex nature of the diseases
and the similarity of symptoms [8].

Previous studies have employed machine learning approaches, such as SVM, Random Forest, k-NN, and
Naive Bayes [9][10]. However, these methods often require multiple preprocessing steps and feature
extraction, and they may not adapt well to different data types or specific parameters [10][11]. Deep learning
(DL) approaches, such as CNNs, can automatically extract features from images, capturing low-, mid-, and
high-level representations. Furthermore, transfer learning (TL) models, including VGG16, ResNet, Inception,
MobileNet, and EfficientNet-V2, have shown promising results in terms of accuracy [12][13][14].

Deep learning (DL) approaches have several limitations, including dependence on large datasets, high
computational costs, and limited interpretability [8]. However, these constraints can be mitigated through
techniques such as eXplainable Artificial Intelligence (XAl), attention mechanisms, and hybrid models [3]. In
response to these challenges, DL techniques have gained increasing attention in the field of disease detection
[15].

Research on image-based identification of paddy plant diseases still faces significant challenges that have
not been fully resolved. Limitations in publicly available datasets, such as the ‘PlantVillage’ dataset [16] which
contains a restricted number of leaf disease segmentation images and suffers from class imbalance [8][3] can
adversely affect model accuracy. Some diseases exhibit similar symptoms, complicating precise diagnosis [17],
Misclassification can also occur in images with complex backgrounds [18] poor lighting, or noise [19][4]
further increasing errors. Several previous studies have developed DL models but still report unsatisfactory
results, high computational costs, and overfitting [8][18][19][20][21]. Additionally, the tendency of DL models
to act as “black box” makes interpretation difficult for end users, who require results that are not only accurate
but also easily understandable [18][22].

The state-of-the-art in this study focuses on strengthening CNN-based classifiers for rice leaf disease
identification [18]. Study [23] proposed a deep learning approach incorporating shallow layers and residual
connections, achieving an accuracy of 99.66%. Study [24] reported that a fully connected CNN provided fast
and effective performance with an accuracy of 99.7%. In study [1], the Deep-CNN method achieved an
accuracy of 99.81%. Research employing transfer learning, such as study [25], presented a self-attention
network based on the ResNet50 architecture with a kernel attention mechanism, attaining an accuracy of
98.71%. Study [15] utilized EfficientNet-B4, reaching 99.09% accuracy in training and 96.91% in testing.
Another approach combined CNN feature extraction with a self-attention mechanism using the ResNet34
architecture, resulting in 98.54% accuracy [10]. The effectiveness of VGG16 was demonstrated by its strong
generalization ability to unseen images, yielding an accuracy of 99.94% [5]. Study [26] employed SqueezeNet
with neural networks, obtaining an accuracy of 93.3%. Finally, study [18] introduced PlantDet, which achieved
an accuracy of 98.53%.

The main contribution of this study is a hybrid CNN+LSTM+Attention Mechanism approach. CNN is
employed to extract spatial features from leaf images, LSTM captures sequential dependencies among the
features, and the attention mechanism enhances the model’s focus on critical regions relevant for disease
identification. An XAl-based approach is integrated into the classification process, allowing users to
understand which areas of the leaf image most influence the model’s decisions. Additionally, fine-tuning and
hyperparameter optimization techniques are applied. Performance comparisons are conducted using transfer
learning models, including MobileNetV2, VGG16, and a custom CNN.

The rest of this study will then review related works, Section 3 describes the proposed approach method,
Section 4 presents the empirical results and discussion, the Last section describes the conclusions and future
work

2. METHOD

The dataset used in this project was obtained from an ongoing Kaggle competition, namely the Paddy
Disease Classification task (link: https://www.kaggle.com/datasets/imbikramsaha/paddy-doctor) he dataset
contains ten classes, as described in the introduction of this report, and consists of 10,406 images. Each image
has a height of 640 pixels and a width of 480 pixels, with a maximum pixel value of 255.0, a minimum value
of 0.0, a mean pixel intensity of 115.9670, and a standard deviation of 71.6155. The detailed characteristics of
the dataset are illustrated in Fig. 1.
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Figure 1. Rice leaf disease dataset sample.

2.1. Convolutional Neural Network (CNN)

CNN as one of the technique of feedforward neural network that uses convolution, pooling, and Rectified
Linear Unit (ReLU) layers [27], CNN architecture is illustrated in Figure 2. 1D-CNN generally consists of four
primary layers, which include pooling layers, convolutional layers, activation functions, and dropout layers.

The convolution layer utilizes a filter of suitable size to perform the convolution operation on data. This
layer incorporates a local receptive field, allowing neurons to interpret information and extract high-level
features. Furthermore, it minimizes the number of parameters by employing weight sharing, where the same
set of parameters is applied across all positions of the convolution kernel [28]. The convolution layer and ReLU
activation are mathematically expressed in Equation 1 and Equation 2, respectively.

h = f(x®W + b) )
f(x) = max(0, x) (2)

Where ® denotes the convolution operation, W signifies the weights of the convolution kernel, and b
represents the bias term. The function f(-) corresponds to the activation function, specifically the ReLU in this
context. ReLU introduces nonlinearity into the network, allowing it to handle more complex problems.
Additionally, ReLU forces some neuron outputs to zero, which promotes network sparsity and reduces
parameter interdependence. This helps in extracting relevant features, better fitting the training data, and
mitigating overfitting. The pooling layer performs a sampling operation on the output of the convolution layer,
aggregating features from similar regions by selecting the maximum value. This layer retains only the most
important features, reducing the amount of feature data. The features are extracted from the original data using
the CNN, and the processed data are then fed into the LSTM, enhanced by the attention mechanism, for
classification prediction [28].
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Figure 2. Structure of CNN

2.2. Long Short-Term Memory (LSTM)

LSTM was designed to address the vanishing and exploding gradient problems faced by traditional RNN
[29]. It also resolves the issue of long-term dependencies that RNNs struggled with, though it still encounters
overfitting challenges due to the large number of parameters that need adjustment [30].

Figure 3 illustrates the structure of the LSTM neural network. In this configuration, i, signifies the input
gate, f; denotes the forget gate, and o, represents the output gate. x; is the input at the current time step, while
C,_, and h,_, refer to the cell state and output from the previous time step. On the other hand C; and h, indicate
the current time step's cell state and output, respectively. The LSTM leverages a unique gating mechanism to
manage the forget, input, and output gates as well as the cell states, which helps in effectively capturing long-
term dependencies within its memory units. The interactions between these components are mathematically
described by the following equations [29][31].

iy = o(Wihe_y + Uix, + by) (3)
fe= U(tht—1 + fot + bf) (4)
0y = o(Wohi—q + Uyx, + by) 5)
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C~f = tanh(VVCht_l + cht + bC) (6)
Co=feXCy+ic+0C, (7)
h; = o, * tanh(C,) (8)

In this equation, o represents the sigmoid activation function, W stands for the weight of the neuron, and
b is the bias term of the neuron.
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Figure 3. LSTM architecture [32]

2.3. Attention Mechanism

The attention mechanism enhances both the detection accuracy and interpretability of the model. By
filtering out irrelevant disturbances, this technique allows the model to concentrate on critical information,
thereby generating optimal outputs [31]. x,, x,,.., x; refers to the inputs of the LSTM, while h4, h,,.., h;
signifies the outputs from the hidden layer of the LSTM, which serve as inputs to the attention mechanism to
determine the distribution of attention weights. These weights indicate the significance of the state parameters.
The attention mechanism formula is stated as follows [28]:

e; = utanh(W;h; + b) )
exp(e;)

QG ==

Yiexp(e;)

c=) ah (12)

Where, e; represents the attention probability distribution for h; at the ith moment. The symbols u and W
refer to the weighting coefficients, while b denotes the bias coefficient, and C represents the weighted feature.

(10)

2.4. Proposed Algoritma

Convolutional Neural Networks (CNNs) are highly effective in extracting spatial features from images
but are limited in capturing sequential dependencies. Conversely, Long Short-Term Memory networks
(LSTMs) are well-suited for modeling temporal or sequential patterns [28][33][28]. To leverage the strengths
of both, we propose a hybrid CNN-LSTM model with an attention mechanism to detect 10 classes of rice leaf
conditions (nine disease categories and one healthy class).

In the proposed architecture, CNN layers first extract discriminative spatial features from rice leaf images
through convolution and pooling operations. The extracted feature maps are then fed into LSTM layers, which
capture sequential dependencies among feature representations. To enhance feature selection, an attention
mechanism is applied, enabling the model to prioritize the most informative features while suppressing
irrelevant noise, thereby improving classification performance.

The training and testing process of the proposed model begins by initializing all trainable parameters.
Next, the training dataset D = {(x;, y;)|i = 1, ..., n}is fed into the CNN through the input layer. The CNN then
uses pooling layers and convolution to extract the feature matrix

The training and testing process begins with dataset preprocessing and initialization of trainable
parameters. Each image input x; with its corresponding label y; is processed through CNN layers, generating
a feature matrix X = [X,, ..., X;] .This feature representation is passed to the LSTM layers, where temporal
dependencies are modeled across sequential patterns in the data. The hidden states H, = [h;, ..., h.], are further
refined through the attention layer, which assigns adaptive weights to highlight the most relevant features.
Finally, a fully connected layer and softmax activation classify the output into one of the 10 rice leaf disease
classes.

The CNN block (Conv2D) employs 64 kernels with a kernel size of 3x3, followed by ReL U activation,
dropout, and max-pooling layers. A dropout rate of 0.5 is applied to prevent overfitting. The LSTM component
consists of two layers with 128 and 64 hidden units, respectively, designed to balance performance and
computational cost. The attention mechanism layer adaptively learns feature weights and outputs a refined
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feature vector. A flatten layer converts the multidimensional representation into a one-dimensional vector
before passing it to dense layers. Finally, the softmax classifier generates the probability distribution over the
10 classes.

2.5. Performance Evaluation Measures
Performance metrics assess the effectiveness of the learning model defined by the following equation.

A _ TP+ TN (12)

Ay =rpyFp A TN+ FN
i 13
Precision TP FP (13)

2 X precision X recall
Fl1= — (14)
precisio +X recall
TP

— 15
Recall Y (15)

Where, TP is denoted as true positive, FP is denoted as false positive, TN is denoted as true negative, and
FN is denoted as false negative

3. RESULTS AND DISCUSSIONS

The proposed CNN-LSTM-Attention model is designed to effectively extract spatial features from paddy
leaf images, capture sequential dependencies among features, and emphasize relevant regions for precise
disease classification. To train the model, we adopt a combined loss function including a reconstruction loss
and Kullback-Leibler divergence loss, which together form the evidence lower bound objective (ELBO). This
enables the model to learn informative latent representations while ensuring the predictions remain closely
aligned with the true data distribution.

Figure 4 illustrates the training and validation loss over 50 epochs. The figure shows a rapid reduction in
both training and validation loss during the initial epochs, with the curves stabilizing after approximately 10
epochs. The plateau in loss values indicates that the model has successfully converged, suggesting a stable and
efficient training process. This demonstrates that the CNN-LSTM-Attention mechanism is capable of learning
discriminative features for all 10 classes of paddy leaf diseases.

Training and validation loss
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Figure 4. Validation Loss of CNN-LSTM-Attention Mechanism Models

Figure 5 depicts the training and validation accuracy across the same epochs. The training accuracy
quickly rises and saturates near 0.85, while the validation accuracy steadily increases, reaching a similar level.
This trend indicates that the model generalizes well to unseen data without significant overfitting.
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Figure 5. Validation Accuracy of CNN-LSTM-Attention Mechanism Models

Table 1 provides a detailed summary of the CNN-LSTM-Attention model architecture. The input layer
processes image patches of shape (16, 32, 32, 3). The time-distributed layer extracts spatial features for each
patch, followed by a bidirectional LSTM layer capturing temporal dependencies across features. The attention
layer then assigns weights to highlight the most critical features for classification. Dense and dropout layers
are used to produce the final output while minimizing overfitting. In total, the model contains 301,899 trainable
parameters, balancing model complexity with computational efficiency.

Table 1. The Summary of CNN-LSTM based Attention Mechanism

Layer Output Shape Param #

Patch_input (InputLayer) (None, 16, 32, 32, 3) 0
Time_distributed (TimeDistributed) (None, 16, 64) 19,392
Bidirectional (Bidirectional) (Noneg, 1, 64) 197,632
Attention_layer (AttentionLayer) (None, 1, 1) 16,513
Dense_2 (Dense) (None, 1) 65,792

Dropout (Dropout) (None, 1) 0

Dense 3 (Dense) (None, 64, 1) 2,570

The confusion matrix for our model is computed to identify where the algorithm makes errors. Confusion
matrix can be visualized using association tables in the form of heatmaps. While there are several built-in
methods that can be used to display confusion matrix, visualizing them based on scores serves to improve
correlation. Figure 6 shows the confusion matrix for the CNN-LSTM-based attention mechanism algorithm.

The results demonstrate that our algorithm performs excellently in detecting rice leaf diseases.
Confusion Matrix
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Figure 6. Confusion Metrics of CNN-LSTM based Attention Mechanism Model
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Table 2 presents a comprehensive performance comparison between the proposed CNN-LSTM-
Attention model and several widely used deep learning architectures, namely MobileNetV2, VGG16, and a
Custom 3-layer CNN. The evaluation is conducted using four standard classification metrics: Accuracy,
Precision, Recall, and Macro-AUC, which together provide a balanced assessment of overall performance,
class-wise discrimination capability, and robustness.

Table 2. Performance comparison with Other Existing Algorithm

Model Akurasi (%) Presisi (%) Recall (%) AUC Macro
MobileNetV2 [14] 924 92.6 924 0.982
VGG16 [14] 93.2 93.5 93.1 0.981
Custom CNN
(3-layer) [14] 88.8 89.2 88.8 0.960
CNN+LSTM+Attention 95.5 98.12 98.3 0.994

The Custom CNN (3-layer) model exhibits the lowest performance among the compared methods,
achieving an accuracy of 88.8%, precision of 89.2%, recall of 88.8%, and a Macro-AUC of 0.960. This result
indicates that shallow architectures have limited capacity to capture complex spatial and temporal patterns in
the data, leading to suboptimal classification performance.

MobileNetV2 demonstrates improved results with an accuracy of 92.4%, precision of 92.6%, recall of
92.4%, and a Macro-AUC of 0.982. Its lightweight architecture is effective in extracting spatial features;
however, its design prioritizes computational efficiency, which may limit its representational power for more
complex feature dependencies. Similarly, VGG16 achieves competitive performance with an accuracy of
93.2%, precision of 93.5%, recall of 93.1%, and a Macro-AUC of 0.981. While VGG16 benefits from deeper
convolutional layers and richer feature extraction, it lacks mechanisms to explicitly model sequential
dependencies or to selectively emphasize informative features, which constrains its overall performance.

In contrast, the proposed CNN-LSTM-Attention model significantly outperforms all baseline methods
across all evaluation metrics, achieving an accuracy of 95.5%, precision of 98.12%, recall of 98.3%, and the
highest Macro-AUC value of 0.994. The superior performance can be attributed to the synergistic integration
of three components: CNN, which effectively captures spatial feature representations; LSTM, which models
temporal or sequential dependencies within the extracted features; and Attention mechanism, which
dynamically assigns higher weights to the most relevant features, thereby enhancing discriminative capability
and reducing the influence of irrelevant information.

The substantial improvement in precision and recall indicates that the proposed model not only reduces
false positives but also minimizes false negatives, which is particularly critical in high-stakes classification
tasks. Furthermore, the high Macro-AUC value confirms the robustness of the model across all classes,
demonstrating strong generalization performance and class balance. Overall, these results validate the
effectiveness of the proposed CNN-LSTM-Attention architecture in capturing complex feature relationships
and highlight its suitability for deployment in real-world applications requiring high accuracy and reliability.

4. CONCLUSION

This study presents a CNN-LSTM-Attention model for improving classification performance by
effectively capturing spatial, temporal, and contextual feature dependencies. The experimental results
demonstrate that the proposed model consistently outperforms widely used deep learning architectures,
including MobileNetV2, VGG16, and a custom CNN, across all evaluation metrics.

Specifically, the proposed approach achieves superior accuracy, precision, recall, and Macro-AUC,
indicating enhanced discriminative capability, robustness, and balanced performance across classes. The
integration of the attention mechanism plays a crucial role in emphasizing relevant features while suppressing
less informative ones, leading to significant improvements in both precision and recall. This highlights the
model’s ability to reduce false positives and false negatives simultaneously, which is essential for reliable real-
world deployment.

Overall, the findings confirm that combining convolutional feature extraction with sequential modeling
and attention-based feature weighting provides a powerful and effective framework for complex classification
tasks. The proposed CNN-LSTM-Attention architecture offers a promising solution for applications requiring
high accuracy and strong generalization performance. Future work will focus on expanding the dataset,
exploring lightweight model variants for real-time implementation, and evaluating the model’s adaptability to
other domains and datasets.
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