A Comparative Analysis of Decision Tree, Logistic Regression, and Support Vector Machine Algorithms in Sentiment Analysis of Threads App Reviews
DOI:
https://doi.org/10.24076/intechnojournal.2025v7i2.2497Keywords:
Support Vector Machine (SVM), Decision Tree, Threads, Analisis Sentiment, Logistic RegressionAbstract
Purpose: This study aims to analyze user sentiment regarding the Threads application by comparing the performance of different machine learning models. As a relatively new social media platform, understanding user feedback is crucial for identifying service gaps and improving user retention. The research seeks to determine which algorithm provides the highest precision in classifying user reviews into positive and negative sentiments.
Methods: The research utilized a dataset of 3,000 user reviews scraped from
the Google Play Store. The methodology followed a systematic text mining workflow, including preprocessing stages such as noise removal, tokenization, stopword removal, and stemming. Feature extraction was performed using the Term Frequency-Inverse Document Frequency (TF IDF) method. Three machine learning algorithms—Support Vector Machine (SVM), Decision Tree, and Logistic Regression—were implemented and evaluated using K-Fold Cross Validation to ensure statistical reliability.
Result: The experimental results indicate that the Support Vector Machine (SVM) consistently outperformed the other two models. SVM achieved a superior average accuracy of 88.18%, with a peak performance reaching 92.69% during K-Fold testing. Logistic Regression and Decision Tree showed lower accuracy and less stability in handling the high-dimensional text data. These figures confirm that SVM is the most effective model for analyzing the linguistic nuances found in Threads app reviews. Novelty/Originality/Value: This research contributes to the field of software evaluation by providing an empirical comparison of classification algorithms specifically for newly launched social media platforms like Threads. The findings offer practical value for developers to automate the monitoring of user satisfaction. The study demonstrates that integrating rigorous TF-IDF weighting with SVM significantly enhances the accuracy of sentiment detection in short-form mobile application reviews.
References
[1] Hondro, O. (2023). Analisis sentimen pengguna aplikasi e-wallet Dana melalui postingan di media sosial Twitter menggunakan Naïve Bayes. KETIK Jurnal Informatika, 1(1), 27–31. https://jurnal.faatuatua.com/index.php/KETIK/article/view/18
[2] Sitompul, K. P. J., Pratama, A. R., & Baihaqi, K. A. (2023). Komparasi algoritma Naive Bayes, Support Vector Machine, dan Logistic Regression pada analisis sentimen pengguna aplikasi transportasi online. Kumpulan Jurnal Ilmu Komputer, 10(01), 27–38.
[3] Zamsuri, A., Asril, E., & Sadar, M. (2015). Analisis sentimen opini terhadap vaksin Covid-19 pada media sosial Twitter. Jurnal Teknologi Informasi & Komunikasi Digital, 5(1), 100–110.
[4] Amal, M. I., Rahmasita, E. S., Suryaputra, E., & Rakhmawati, N. A. (2022). Analisis klasifikasi sentimen terhadap isu kebocoran data kartu identitas ponsel di Twitter. Jurnal Teknik Informatika dan Sistem Informasi, 8(3). https://doi.org/10.28932/jutisi.v8i3.5483
[5] Larasati, F. A., & Ratnawati, D. E. (2022). Analisis sentimen ulasan aplikasi Dana dengan metode Random Forest. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 6(11). https://j-ptiik.ub.ac.id/index.php/jptiik/article/view/11562
[6] Sepriadi, N. N. (2023). Analisis sentimen review aplikasi MyPertamina menggunakan word embedding FastText dan algoritma K-Nearest Neighbor [Skripsi, Universitas Islam Negeri Sultan Syarif Kasim Riau]. Repository UIN Suska. https://repository.uin-suska.ac.id/73902/
[7] Achmad, A. A., Iin, K., & Iska, Y. (2023). Analisis klasifikasi sentimen berbasis topik pada ulasan layanan Dana dan Sakuku dengan Convolutional Neural Network. INFORMASI (Jurnal Informatika dan Sistem Informasi), 5(2). http://ojs.stmik-im.ac.id/index.php/INFORMASI/article/view/267
[8] Oktavianus, & Hondro, M. (2023). Analisis sentimen pengguna aplikasi e-wallet Dana melalui postingan di media sosial Twitter menggunakan Naïve Bayes. Jurnal Informatika, 1(1), 27–31.
[9] Kusuma, I. N., & Ali, I. (2024). Analisis sentimen pada pengguna aplikasi Dana menggunakan algoritma Naive Bayes. JATI (Jurnal Mahasiswa Teknik Informatika), 8(1). https://ejournal.itn.ac.id/index.php/jati/article/view/9041
[10] Saputro, W. E., & Yuana, H. (2023). Analisis sentimen pengguna dompet digital Dana pada kolom komentar Google Play Store dengan metode klasifikasi Support Vector Machine. JATI (Jurnal Mahasiswa Teknik Informatika), 7(1). https://ejournal.itn.ac.id/index.php/jati/article/view/6842
[11] Saputra, A. (2023). Analisis sentimen aplikasi investasi reksa dana (Bibit) menggunakan metode Support Vector Machine [Skripsi, UPN "Veteran" Yogyakarta]. E-Prints UPNYK. http://eprints.upnyk.ac.id/
[12] Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to Information Retrieval. Cambridge University Press.
[13] Kiedrowsky, F. F., & Andrianingsih. (2023). Sentiment analysis marketplaces digital menggunakan machine learning. JTIK (Jurnal Teknologi Informasi dan Komunikasi), 7(3), 493–499. https://doi.org/10.35870/jtik.v7i3.1002
[14] Imamah, & Rachman, F. H. (2020). Twitter sentiment analysis of Covid-19 using term weighting TF-IDF and Logistic Regression. Proceeding - 6th Information Technology International Seminar (ITIS), 238–242. https://doi.org/10.1109/ITIS50118.2020.9320958
[15] Wulandari, H. D., & Rahman, I. A. (2022). Cryptocurrency price volatility analysis on Bitcoin and altcoins before and during the Covid-19 pandemic in Indonesia. Journal of Applied Business, Taxation and Economics Research, 1(6), 612–624.
[16] Maharani, F. M. D., Hananto, A. L., Hilabi, S. S., Apriani, F. N., Hananto, A., & Huda, B. (2022). Comparison of sentiment classification methods analysis of e-wallet usage using Naive Bayes and K-Nearest Neighbor algorithms. Metik Jurnal, 6(2), 97–103. https://doi.org/10.47002/metik.v6i2.372
Downloads
Published
License
Copyright (c) 2026 Intechno Journal : Information Technology Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.









