IMPLEMENTASI DECISION TREE UNTUK PREDIKSI HARGA RUMAH DI DAERAH TEBET
DOI:
https://doi.org/10.24076/joism.2025v6i2.1928Keywords:
Prediksi Harga Rumah, Decision Tree, Properti, Tebet, Machine LearningAbstract
Penelitian ini mengimplementasikan algoritma Decision Tree untuk memprediksi harga rumah di Tebet, Jakarta Selatan. Decision Tree dipilih karena kemudahan interpretasi dan kemampuannya dalam menangani data numerik dan kategorikal. Data dikumpulkan dari berbagai sumber, meliputi fitur seperti luas tanah, luas bangunan, jumlah kamar, dan lokasi.Data dipraproses dan dibagi menjadi data latih (80%) dan data uji (20%). Model Decision Tree dilatih dan dievaluasi menggunakan Mean Squared Error (MSE) dan R-squared. Hasil penelitian menunjukkan Decision Tree mampu memprediksi harga rumah di Tebet dengan akurasi yang baik. Visualisasi pohon keputusan memberikan informasi tentang fitur-fitur penting dalam penentuan harga.Penelitian ini diharapkan bermanfaat bagi stakeholder di pasar properti Tebet dalam pengambilan keputusan.
Downloads
References
Z. Zhang, “Decision Trees for Objective House Price Prediction,” in 2021 3rd International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), 2021, pp. 280–283, doi: 10.1109/MLBDBI54094.2021.00059.
R. G. Wardhana, G. Wang, and F. Sibuea, “PENERAPAN MACHINE LEARNING DALAM PREDIKSI TINGKAT KASUS PENYAKIT DI INDONESIA,” J. Inf. Syst. Manag., vol. 5, no. 1, pp. 40–45, 2023, doi: https://doi.org/10.24076/joism.2023v5i1.1136.
P. Chandu and N. B. Devi, “Improved Prediction Accuracy of House Price Using Decision Tree Algorithm over Linear Regression Algorithm,” in 2023 Eighth International Conference on Science Technology Engineering and Mathematics (ICONSTEM), 2023, pp. 1–6, doi: 10.1109/ICONSTEM56934.2023.10142280.
A. Sul, V. Jagtap, P. Jesalpura, A. Nema, and R. R, “Optimizing House Price Prediction: Comparative Analysis of Machine Learning Techniques,” in 2024 Third International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT), 2024, pp. 1–7, doi: 10.1109/ICEEICT61591.2024.10718610.
H. Li, “House Price Prediction Based on Machine Learning,” in Proceedings of the 3rd International Conference on Signal Processing and Machine Learning, 2023, pp. 623–628, doi: 10.54254/2755-2721/4/2023362.
S. Sharma, D. Arora, G. Shankar, P. Sharma, and V. Motwani, “House Price Prediction using Machine Learning Algorithm,” in 2023 7th International Conference on Computing Methodologies and Communication (ICCMC), 2023, pp. 982–986, doi: 10.1109/ICCMC56507.2023.10084197.
B. Sonare, S. Thepade, P. Gangane, E. Govardhan, T. Nawani, and P. Gadkar, “Going the distance: Application of Machine Learning Algorithms in predicting Housing Price Dynamics,” in 2024 International Conference on Computational Intelligence for Green and Sustainable Technologies (ICCIGST), 2024, pp. 1–4, doi: 10.1109/ICCIGST60741.2024.10717472.
M. Thamarai and S. Malarvizhi, “House Price Prediction Modeling Using Machine Learning,” Int. J. Inf. Eng. Electron. Bus., vol. 12, no. 2, pp. 15–20, 2020, doi: 10.5815/ijieeb.2020.02.03.
J. J. Guo, “House Rent Prediction Method Based on Decision Tree: Take India as an Example,” in 5th International Conference on Global Economy, Finance and Humanities Research (GEFHR 2023), 2023, pp. 666–671, doi: 10.54097/hbem.v21i.14722.
P. A. Kumar, H. Rawat, and Y. Singh, “Effective Machine Learning Algorithm to Predict House Price,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 11, no. 11, pp. 1741–1744, 2023, doi: 10.22214/ijraset.2023.56935.
I. Setiawati, A. Permana, and A. Hermawan, “IMPLEMENTASI DECISION TREE UNTUK MENDIAGNOSIS PENYAKIT LIVER,” J. Inf. Syst. Manag., vol. 1, no. 1, pp. 13–17, 2019, doi: https://doi.org/10.24076/joism.2019v1i1.17.
M. Sharma, D. Sharma, R. Burle, P. Patil, I. Joge, and C. Puri, “Predicting House Price Model?: A Comprehensive Analysis with Random Forest and Decision Tree Method,” in 2024 3rd International Conference for Innovation in Technology (INOCON), 2024, pp. 1–6, doi: 10.1109/INOCON60754.2024.10511732.
F. Martinez-Plumed et al., “CRISP-DM Twenty Years Later: From Data Mining Processes to Data Science Trajectories,” IEEE Trans. Knowl. Data Eng., vol. 33, no. 8, pp. 3048–3061, 2021, doi: 10.1109/TKDE.2019.2962680.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Information System Management (JOISM)

This work is licensed under a Creative Commons Attribution 4.0 International License.