PROYEKSI WAKTU POTENSIAL UNTUK BERINVESTASI MENGGUNAKAN ALGORITMA LONG SHORT-TERM MEMORY
DOI:
https://doi.org/10.24076/joism.2026v7i2.2400Keywords:
suku bunga, inflasi, ketenagakerjaan, strategi investasi, long short-term memoryAbstract
Penelitian ini bertujuan untuk memproyeksikan kondisi makroekonomi Indonesia pada periode 2025–2029 serta merumuskan strategi investasi yang relevan berdasarkan hasil forecasting menggunakan algoritma Long Short-Term Memory (LSTM). Tiga indikator ekonomi utama yang dianalisis meliputi tingkat suku bunga (Interest Rate), inflasi (Consumer Price Index), dan ketenagakerjaan (Non-Farm Payroll). Data historis bulanan dari tahun 1970 hingga 2023 digunakan untuk melatih model LSTM, yang kemudian menghasilkan prediksi nilai ketiga indikator tersebut secara tahunan. Hasil forecasting menunjukkan tren penurunan suku bunga dan inflasi secara bertahap, serta pertumbuhan ketenagakerjaan yang meningkat dari tahun ke tahun. Berdasarkan hasil tersebut, strategi investasi disusun secara dinamis, menyesuaikan kondisi ekonomi makro pada setiap tahunnya. Strategi yang disarankan mencakup pendekatan konservatif pada awal periode (2025–2026) dan lebih agresif pada fase ekspansi ekonomi (2028–2029). Penelitian ini menunjukkan bahwa penggunaan model LSTM dapat membantu investor dalam menyusun keputusan investasi yang lebih tepat, berbasis pada proyeksi data makroekonomi yang akurat dan terukur.
References
[1] L. Liu and T. Zhang, “Economic policy uncertainty and stock market volatility,” Financ. Res. Lett., vol. 15, pp. 99–105, 2015, doi: https://doi.org/10.1016/j.frl.2015.08.009.
[2] S. R. Baker, N. Bloom, and S. J. Davis, “Measuring Economic Policy Uncertainty*,” Q. J. Econ., vol. 131, no. 4, pp. 1593–1636, 2016, doi: 10.1093/qje/qjw024.
[3] Indonesia Central Securities Depository, “Statistik Pasar Modal Indonesia,” 2024.
[4] C. M. Annur, “Alasan yang Membuat Responden Tidak Memiliki Investasi,” Databoks. Accessed: Sep. 08, 2024. [Online]. Available: https://databoks.katadata.co.id/datapublish/2022/11/29/alasan-orang-tak-mau-investasi-dari-kurang-modal-sampai-takut-riba
[5] A. Adventy, “Investor Pasar Modal Masih Minim Karena Kurang Edukasi dan Literasi,” Bisnis Market. Accessed: Jul. 26, 2025. [Online]. Available: https://market.bisnis.com/read/20230603/7/1661803/investor-pasar-modal-masih-minim-karena-kurang-edukasi-dan-literasi
[6] R. Hyndman and G. Athanasopoulos, “Business Forecasting: Principles and Practice,” South. Econ. J., vol. 19, no. 4, p. 531, 2018, doi: 10.2307/1054108.
[7] M. Casta, “Inflation, interest rates and the predictability of stock returns,” Financ. Res. Lett., vol. 58, p. 104380, 2023, doi: https://doi.org/10.1016/j.frl.2023.104380.
[8] V. Atanasov, “Unemployment and aggregate stock returns,” J. Bank. Financ., vol. 129, p. 106159, 2021, doi: https://doi.org/10.1016/j.jbankfin.2021.106159.
[9] Z. Zhang, “Stock Returns and Inflation Redux : An Explanation from Monetary Policy in Advanced and Emerging Markets,” 2021.
[10] M. J. Kim and D. Kwon, “Dynamic asset allocation strategy: an economic regime approach,” J. Asset Manag., vol. 24, no. 2, pp. 136–147, 2023, doi: 10.1057/s41260-022-00296-8.
[11] J. Benchimol, Y. Saadon, and N. Segev, “Stock market reactions to monetary policy surprises under uncertainty,” Int. Rev. Financ. Anal., vol. 89, p. 102783, 2023, doi: https://doi.org/10.1016/j.irfa.2023.102783.
[12] C. E. Boehm and T. N. Kroner, “The U.S. Economic News, and The Global Financial Cycle,” Rev. Econ. Stud., p. rdaf020, 2025, doi: 10.1093/restud/rdaf020.
[13] T. N. Kroner, “How Markets Process Macro News : The Importance of Investor,” 2025, doi: https://doi.org/10.17016/FEDS.2025.022.
[14] S. S. Ishak and M. Abednego, “Indonesian Consumer Price Index Forecasting Using Autoregressive Integrated Moving Average,” Int. J. Electron. Commun. Syst., vol. 3, no. 1, pp. 33–40, 2023, doi: 10.24042/ijecs.v3i1.18252.
[15] Y. Weldri, A. Nanlohy, and S. B. Loklomin, “Autoregressive Integrated Moving Average (ARIMA) Model to Forecast Inflation In Indonesia,” Var. J. Stat. Its Appl., vol. 5, no. 2, pp. 201–208, 2023, doi: 10.30598/variancevol5iss2page201-208.
[16] F. Wahyu, D. Wicaksono, and A. B. Rahmat, “Optimasi Peramalan Tingkat Laju Inflasi Indonesia Melalui Pendekatan Ensemble Bagging Pada Algoritma Support Vector Regression,” J. Teknol. Terpadu, vol. 12, no. 2, pp. 144–150, 2024.
[17] M. Muhajir and P. Canas, “Indonesian Inflation Forecasting with Recurrent Neural Network Long Short-Term Memory ( RNN-LSTM ),” Enthusiastic Int. J. Appl. Stat. Data Sci., vol. 4, no. 2, pp. 132–142, 2024, doi: https://doi.org/10.20885/enthusiastic.vol4.iss2.art5.
[18] A. A. M. Salem, A. Jummah, and A. Albourawi, “Predictive Models for Interest Rate Forecasting Using Machine Learning : A Comparative Analysis and Practical Application,” Brill. Res. Artif. Intell., vol. 4, no. 2, pp. 764–770, 2024, doi: https://doi.org/10.47709/brilliance.v4i2.4983.
[19] N. G. Mankiw, Principles Of Economics. 2021.
[20] W. F. Sharpe, “CAPITAL ASSET PRICES: A THEORY OF MARKET EQUILIBRIUM UNDER CONDITIONS OF RISK,” J. Finance, vol. 19, no. 3, pp. 425–442, 1964, doi: https://doi.org/10.1111/j.1540-6261.1964.tb02865.x.
[21] E. F. Fama, “Efficient Capital Markets: A Review of Theory and Empirical Work,” J. Finance, vol. 25, no. 2, pp. 383–417, Dec. 1970, doi: 10.2307/2325486.
[22] B. Graham and D. L. F. Dodd, Security Analysis: The Classic 1934 Edition. McGraw-Hill Education, 1934. [Online]. Available: https://books.google.co.id/books?id=wXlrnZ1uqK0C
[23] S. A. Ross, “The arbitrage theory of capital asset pricing,” J. Econ. Theory, vol. 13, no. 3, pp. 341–360, 1976, doi: https://doi.org/10.1016/0022-0531(76)90046-6.
[24] H. Markowitz, “Portfolio Selection,” J. Finance, vol. 7, no. 1, pp. 77–91, Dec. 1952, doi: 10.2307/2975974.
[25] A. F. Burns and W. C. Mitchell, Measuring Business Cycles. in National Bureau of Economic Research project report. National Bureau of Economic Research, 1946. [Online]. Available: https://books.google.co.id/books?id=wN1dAAAAIAAJ
[26] R. E. Lucas, “Understanding business cycles,” Carnegie-Rochester Conf. Ser. Public Policy, vol. 5, pp. 7–29, 1977, doi: https://doi.org/10.1016/0167-2231(77)90002-1.
[27] J. H. Stock and M. W. Watson, “Chapter 1 Business cycle fluctuations in us macroeconomic time series,” vol. 1, in Handbook of Macroeconomics, vol. 1. , Elsevier, 1999, pp. 3–64. doi: https://doi.org/10.1016/S1574-0048(99)01004-6.
[28] S. B. Aruoba, F. X. Diebold, and C. Scotti, “Real-Time Measurement of Business Conditions,” J. Bus. & Econ. Stat., vol. 27, no. 4, pp. 417–427, 2009, doi: 10.1198/jbes.2009.07205.
[29] C. Borio, M. Drehmann, and F. D. Xia, “Forecasting recessions: the importance of the financial cycle,” J. Macroecon., vol. 66, p. 103258, 2020, doi: https://doi.org/10.1016/j.jmacro.2020.103258.
[30] D. Hopp, “Benchmarking econometric and machine learning methodologies in nowcasting GDP,” Empir. Econ., vol. 66, no. 5, pp. 2191–2247, 2024, doi: 10.1007/s00181-023-02515-6.
[31] F. Mishkin, The Economics of Money, Banking, and Financial Markets, 3rd ed. New York: HarperCollins, 2018.
[32] J. Wurgler, “Financial markets and the allocation of capital,” J. financ. econ., vol. 58, no. 1, pp. 187–214, 2000, doi: https://doi.org/10.1016/S0304-405X(00)00070-2.
[33] J. Cloyne, C. Ferreira, M. Froemel, and P. Surico, “Monetary Policy, Corporate Finance, and Investment,” J. Eur. Econ. Assoc., vol. 21, no. 6, pp. 2586–2634, 2023, doi: 10.1093/jeea/jvad009.
[34] F. Holm-Hadulla and C. Thürwächter, “Heterogeneity in corporate debt structures and the transmission of monetary policy,” Eur. Econ. Rev., vol. 136, p. 103743, 2021, doi: https://doi.org/10.1016/j.euroecorev.2021.103743.
[35] E. Yilmaz and N. Bulut, “Inflation dynamics: Profits, wages and import prices,” Econ. Syst., vol. 49, no. 3, p. 101310, 2025, doi: https://doi.org/10.1016/j.ecosys.2025.101310.
[36] A. Tarkom and N. U. Ujah, “Inflation, interest rate, and firm efficiency: The impact of policy uncertainty,” J. Int. Money Financ., vol. 131, p. 102799, 2023, doi: https://doi.org/10.1016/j.jimonfin.2022.102799.
[37] T. Klein, “Agree to disagree? Predictions of U.S. nonfarm payroll changes between 2008 and 2020 and the impact of the COVID19 labor shock,” J. Econ. Behav. Organ., vol. 194, pp. 264–286, 2022, doi: https://doi.org/10.1016/j.jebo.2021.11.028.
[38] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997, doi: 10.1162/neco.1997.9.8.1735.
[39] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. in Adaptive Computation and Machine Learning series. MIT Press, 2016. [Online]. Available: https://books.google.co.id/books?id=Np9SDQAAQBAJ
[40] T. Fischer and C. Krauss, “Deep learning with long short-term memory networks for financial market predictions,” Eur. J. Oper. Res., vol. 270, no. 2, pp. 654–669, 2018, doi: https://doi.org/10.1016/j.ejor.2017.11.054.
[41] L. Paranhos, “Predicting inflation with recurrent neural networks,” Int. J. Forecast., 2025, doi: https://doi.org/10.1016/j.ijforecast.2024.07.010.
[42] A. Abel, B. Bernanke, and D. Croushoew, Macroeconomics, vol. 11, no. 1. 2020.
[43] Z. Bodie, A. Kane, and A. Marcus, Investments, vol. 11, no. 1. 2014.
[44] F. J. Fabozzi, S. M. Focardi, R. D. Arnott, and T. R. Aronson, Investment Management: A Science to Teach or an Art to Learn? 2014. doi: 10.2470/rf.v2014.n3.1.
[45] D. Begg, G. Vernasca, S. Fischer, and R. Dornbusch, economics, 11th ed. McGraw-Hill Education, 2010.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Journal of Information System Management (JOISM)

This work is licensed under a Creative Commons Attribution 4.0 International License.








